Approximations at 0 for $\ln(1+x)$ and $(1+x)^r$

Next, we compute two linear approximations that are slightly more challenging. f(x) f'(x) f(0) f'(0)Here's the table of values: $\ln(1+x)$ $\frac{1}{1+x}$ 0 1 And here $(1+x)^r$ $r(1+x)^{r-1}$ 1 rare the linear approximations we get from the table:

- 1. $\ln(1+x) \approx x$ (if $x \approx 0$)
- 2. $(1+x)^r \approx 1 + rx$ (if $x \approx 0$)

Remember that we computed the linear approximation to $\ln x$ at $x_0 = 1$. Since our base point wasn't 0 we couldn't include that here. Because $\ln x \to -\infty$ as $x \to 0$, a linear approximation of $\ln x$ near $x_0 = 0$ is useless to us. Instead we have a linear approximation of the function $\ln(1+x)$ near our default base point $x_0 = 0$, which works out to nearly the same thing as a linear approximation of $\ln x$ near $x_0 = 1$.

Similarly, we found a linear approximation to $(1 + x)^r$; not to x^r . For some values of r, x^r is not well behaved when x = 0. If we really need an approximation of x^r we can get one by a change of variables.

For example, in a previous example we computed that $\ln u \approx u - 1$ for $u \approx 0$ (we've just replaced x by u.) Now we change variables by setting u = 1 + x. If we plug in 1 + x everywhere we had a u we get:

$$\ln(1+x) \approx (1+x) - 1 = x,$$

which is exactly the formula we have above.

If you've memorized $\ln(1+x) \approx x$ for $x \approx 0$ you can quickly find an approximation for $\ln u$ for $u \approx 1$ through the change of variables x = u - 1.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.