Comparing Quadratic Approximations to Calculator Computations

In a previous worked example, we explored linear approximations to the sine function at the point $x=0$. In this example, we use the quadratic approximation for e^{x} to calculate values of the exponential function near $x=0$ and again compare the results to decimal approximations on a scientific calculator.

Find the quadratic approximation to e^{x} at the point $x=0$ and use your answer to approximate the values of $e^{.01}, e^{.1}$ and e. Check your answer on a calculator.

Solution:

In the lecture, you learned that quadratic approximation to a function $f(x)$ at a point $x=a$ was given by a particular quadratic polynomial. This polynomial $Q(x)$ should be chosen so that $Q(a)=f(a), Q^{\prime}(a)=f^{\prime}(a)$ and $Q^{\prime \prime}(a)=f^{\prime \prime}(a)$. In the case where $f(x)=e^{x}$, we saw from lecture that the quadratic approximation at $x=0$ was given by:

$$
\begin{aligned}
Q(x)=f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2}(x-0)^{2} & =e^{0}+e^{0}(x-0)+\frac{e^{0}}{2}(x-0)^{2} \\
& =1+x+\frac{1}{2} x^{2}
\end{aligned}
$$

In short, we write $e^{x} \approx 1+x+\frac{1}{2} x^{2}$ when $x \approx 0$. (It's very illuminating to again draw a picture of the exponential curve and its quadratic approximation at $x=0$ to illustrate this.) So we would approximate the values of sine above as follows:

$$
\begin{aligned}
e^{.01} & \approx 1+.01+(.01)^{2} / 2=1.01005 \\
e^{1} & \approx 1+.1+(.1)^{2} / 2=1.105 \\
e^{1} & \approx 1+1+1^{2} / 2=2.5
\end{aligned}
$$

As in the previous worked example, we expect the approximations at values closest to $x=0$ (where the quadratic approximation agrees with the function) will be the most accurate. The calculator confirms this.

$$
\begin{aligned}
e^{.01} & =1.0100501670 \ldots \\
e^{\cdot 1} & =1.1051709180 \ldots \\
e & =2.7182818284 \ldots
\end{aligned}
$$

where we've only recorded the first ten digits of the decimal expansion. Notice that $e^{.01}$ only differs from our estimate 1.01005 by less than .00000017 , an extremely accurate approximation! Yet e differs from 2.5 by more than .21 . Again, the approximation will be poor for large values of x (i.e. far from $x=0$) since a quadratic function grows much more slowly than an exponential function. In general, these approximations should only be relied upon for values near the point $x=a$ at which we perform the approximation. Much later in the course, we'll have a quantitative estimate for the error often referred to as "Taylor's theorem with remainder."

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

