Features of Graphs

The Graph Features mathlet allows you to choose the coefficients of a degree three polynomial and then illustrates where the graph of that polynomial is rising (increasing), falling (decreasing), concave and convex.

Find coefficient values a, b, c and d for a polynomial function:

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

whose graph is:

- convex for $x>2$
- concave for $x<2$
- falling when $x<1$
- rising when $1<x<3$
- falling when $x>3$.

Can you find two different polynomials that satisfy these requirements? Why or why not?

Bonus: Make up a problem similar to this one for a friend to solve.

Solution

We could use the mathlet and trial and error to find a function that matches this description. A more efficient method employs the concept of an "antiderivative", identifying a candidate for the second derivative and then working backward to find a function that satisfies the requirements of the problem.

From the concavity requirements, we see that the graph has a point of inflection at $x=2$. It's natural to guess $f^{\prime \prime}(x)=x-2$. Since the graph of $f(x)$ is concave for $x>2$, the second derivative of f must be negative when $x>2$, so we change our guess to:

$$
f^{\prime \prime}(x)=-x+2 .
$$

If $f^{\prime \prime}(x)=-x+2$, what is f ? For any constant k, the derivative of

$$
f^{\prime}(x)=-\frac{1}{2} x^{2}+2 x+k
$$

equals $f^{\prime \prime}$. We might consider $-\frac{1}{2} x^{2}+2 x$, but f^{\prime} must equal zero at the critical points 1 and 3 . To achieve this you could compare the value of $f^{\prime}(x)$ to the product $(x-1)(x-3)$ or plug in $x=1$ (or $x=3)$ then solve for k :

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{2} x^{2}+2 x+k \\
f^{\prime}(1) & =-\frac{1}{2}+2+k
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{3}{2}+k \\
& k=-\frac{3}{2}
\end{aligned}
$$

We conclude that we want:

$$
f^{\prime}(x)=-\frac{1}{2} x^{2}+2 x-\frac{3}{2}
$$

Luckily, it's also true that $f^{\prime}(x)=0$ when $x=3$:

$$
\begin{aligned}
f^{\prime}(3) & =-\frac{1}{2} \cdot 9+2 \cdot 3-\frac{3}{2} \\
& =-\frac{9}{2}+\frac{12}{2}-\frac{3}{2} \\
& =0 \checkmark
\end{aligned}
$$

The calculation of $f(x)$ proceeds similarly. First we find a general function whose derivative is $f^{\prime}(x)$:

$$
f(x)=-\frac{1}{6} x^{3}+x^{2}-\frac{3}{2} x+d
$$

Next we find the value of d. But wait! The value of d will have no effect on where the graph is rising, falling, concave or convex, so d can have any value. Let's use Professor Jerison's favorite number and choose $d=0$.

We conclude that:

$$
\begin{aligned}
a & \approx-0.16 \\
b & =1 \\
c & =-1.5 \\
d & =0 .
\end{aligned}
$$

We could find a different polynomial satisfying these requirements by selecting a different value of d, a different function $f^{\prime \prime}(x)$ which is zero at $x=2$ and negative when $x>2$, or by multiplying all of the coefficients by any non-zero number.

Use the mathlet to check this answer; because the value of a is approximate your curve may not match the description exactly.

Bonus: It's relatively easy to create a new problem of this type.
First, choose any linear expression $m x+b$ to be your second derivative $f^{\prime \prime}(x)$. The point of inflection of $f(x)$ will be at the point $x=-\frac{b}{m}$ and its concavity to the left and right of $x=-\frac{b}{m}$ will depend on the sign of m.

The function $f^{\prime}(x)=\frac{m}{2} x^{2}+b x+k$ then has derivative $f^{\prime \prime}(x)$. The critical points of $f(x)$ depend on your choice of k; if necessary you can use the quadratic formula to find them.

Finally,

$$
f(x)=\frac{m}{6} x^{3}+\frac{b}{2} x^{2}+k x+d
$$

If you can't graph your function f using the mathlet, try multiplying or dividing all of its coefficients by the same constant.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

