
Max/Min Example 2 

This is an example of a minimization problem with a constraint. 
Example: Find the box (without a top) with least surface area for a fixed 

volume. 
Again, we start by drawing a diagram and choosing variables. (This time 

we’ll have four variable names.) I’ll make things simpler by telling you in ad
vance that the best box has a square bottom — knowing that the length of the 
box equals its width will let us use one fewer variable. It’s often true that the 
correct answer is something symmetric, but you weren’t expected to know this 
in advance. 

Draw a picture of an open-topped box whose length and width equals x and 
whose height is y. The volume of the box is V = x2y and its surface area is the 
area of the base plus the area of each of the four sides: A = x2 + 4(xy). 

The big difference between this problem and the last is that we have the 
constraint that the box must have a certain volume — this determines the 
relationship between x and y. 

V 
y = 

x2 

We can use this to rewrite the formula for A in terms of a single variable: 

A(x) = x 2 + 4x
V 
x2 

4V 
A(x) = x 2 + 

x 

Now that we have a formula for the value we’re trying to minimize — the 
surface area — we’ll follow the same procedure as before. Namely, we’ll look 
for the critical points then check the endpoints and any discontinuities. 

To find the critical points we take the derivative of A(x) and set it equal to 
zero. 

4V 
A(x) = x 2 + 

x 
4V 

A�(x) = 2x − 
x2 

4V 
2x − 

x2 
= 0 

4V 
2x = 

x2 

2V 
x = 

x2 

x 3 = 2V 
11 

x = 2 3V 3 (critical point) 
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We are not done; we don’t even know whether this critical point gives us the 
most surface area or the least. 

Let’s check the ends: what are they? What’s the smallest possible value of 
x? 

Student: x > 0 
This is a good answer! We can’t build a box with a negative side length. 
What’s the largest possible value of x? It’s true that: 

V 
x < 

y 

but since we said y = x
V we can’t use this as a limit. 2 

Student: x is less than infinity? 
That’s right. 0 < x < ∞. 
This is an important realization; if there’s no obvious limit on a variable the 

upper limit is infinity. And infinity is a very important endpoint, and is usually 
an easy endpoint to check. 

We have to consider the possibility that if we shrink the sides all the way to 
x = 0 we’ll get a better box. It would be very strange — maybe infinitely tall 
— but it might have the least surface area; we’ll have to see. 

A(0+) = x 
4V2 + 
x x=0+ 

Here the term 4x
V is going to infinity as x approaches 0 from the positive side; 

a box whose surface area approaches infinity is a bad box. 
At the other end we get: 

A(∞) = x 
4V2 + 
x x=∞ 

which is also infinite. 
We can now draw a schematic for our graph. The surface area goes to infinity 

as x goes to 0 (from the positive side) and as x goes to infinity. There’s only 
one critical point — only one place where the graph can turn around — so that 
point must be where the surface area reaches its minimum. 

An alternative to checking ends is the second derivative test. The second 
derivative test is not recommended, and for most of the problems in this class it 
will be hard to use the second derivative test. However, this is a simple enough 
problem that we are able to use it. 

A�(x) = 2x − 
4V 
x2 

A��(x) = 2 + 
8V 
x3 
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The second derivative is always positive (because x is always positive), so the 
graph of A(x) is always concave up. This tells us that the critical point is at the 
lowest point of a “smile shape” and so must correspond to a minimum value of 
A(x). 

Question: Is this the answer to the question, or do we have to calculate y 
and A and so on? 

Answer: What answer is appropriate depends on what the question is. We 
V 

to know the y value, which is the height of the box. 

V 
y = 

x2 

V 
= 

11 
3know that x = 2 If we’re going to build to build the box we’ll also need 3 . 

11 
)2(2 V3 3

12 
2− V3 3y = 

We could figure out the value of A; this would be appropriate if we wanted 
to know how much money it was going to cost to build this box. 

A(x) = x 2 +
4V 
x 

4V11 
)2 +(2 V3 3= 11 

2 V3 3 

22 1 
3V −

1 
32−2 V + 4V3 3= · 

22 21 
2)2−2 V + (2 V3 3 3 3= · 

222 
(2 + 2 2 )V3 3 3= · 

22 
3 2 V3 3= · 

So one possible answer to this problem is that the box with minimum surface 
area has: 

11 
length = 2 V3 3 

12 
height = 2− V and3 3

22 
surface area = 3 2 V3 3 · 

However, there are much more meaningful ways of answering this question. 
If we use dimensionless variables it won’t make a difference whether the sides of 
the box are measured in inches or kilometers and we may learn more about the 
problem. One famous dimensionless quantity is π, the ratio of the circumference 
of a circle to its diameter. 
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For example, A 

V 
2 
3 
= 3 2· 1 

3 is a dimensionless quantity, because if A is measured 

in ∈2 and V is measured in ∈3 the dimensions will cancel. If you increase the 
volume, you’ll increase the surface area by the 23 power of the volume. 

The other dimensionless quantity is: 

11 
x 2 
y 2−

This is the best answer to the question; it tells us that the box with minimum 
surface area has a base that is twice as wide as its height. This is the optimal 
shape of the box. 

Question: Could we have gotten the answer if we weren’t told that the 
bottom was square? 

Answer: Yes. You can do it all in one step if you use multivariable calculus 
and include variables for both the length and width of the box. Or you can do 
it in two steps using ideas from this class by first figuring out what rectangle 
has the smallest perimeter for a fixed area. 

Question: Why did you divide x by y? 
Answer: We were looking for dimensionless quantities. The lengths x and 

y are measured in the same units, and x/y gives you the proportions of the 
box. Another word for what we’re interested in here is proportions. These are 
universal, independent of the volume V . The proportions would be the same 
for any box, at any scale; this is why they provide the nicest answer. 

V3 3 

= 2 = 12 
V3 3 
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