Implicit Differentiation and Min/Max

Example: Find the box (without a top) with least surface area for a fixed volume.

Another way to solve this problem is by using implicit differentiation. As before, this method has some advantages and some disadvantages.

We start the same way:

$$
V=x^{2} y, \quad A=x^{2}+4 x y
$$

The goal is to find the minimum value of A while holding V constant.
Next, we just differentiate:

$$
\frac{d}{d x} V=2 x y+x^{2} \frac{d y}{d x} \Longrightarrow 0=2 x y+x^{2} y^{\prime}
$$

So $y^{\prime}=-\frac{2 y}{x}$.

$$
\frac{d A}{d x}=2 x+4 y+4 x y^{\prime}
$$

And when we plug in $y^{\prime}=-\frac{2 y}{x}$ we get:

$$
\begin{aligned}
\frac{d A}{d x} & =2 x+4 y+4 x\left(-\frac{2 y}{x}\right) \\
& =2 x+4 y-8 y \\
\frac{d A}{d x} & =2 x-4 y
\end{aligned}
$$

To find the critical points, we set $\frac{d A}{d x}$ equal to zero and get $0=2 x-4 y$ or

$$
\frac{x}{y}=2 .
$$

This method gets to the answer faster and gets the nicer answer - the scale invariant proportions.

The disadvantage is that we did not check whether this critical point is a maximum, minimum, or neither.

Question: How would we check it?
Answer: By looking at the values of $A\left(0^{+}\right)$and $A(\infty)$ or perhaps by using your intuition - would a very tall box with a tiny base have more or less surface area than a box that's the lower half of a cube? What about a very short box with a wide base?

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

