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Ring on a String 

We’re going to do one more max/min problem. 
Consider a ring on a string held fixed at two ends at (0, 0) and (a, b) (see 

Fig. 1). The ring is free to slide to any point. Find the position (x, y) that the 
ring slides to. 

Note that if b = 0, i.e. if the two ends are at equal heights, the ring will 
settle midway between the two ends (x = a 

2 ). We can perform this experiment 
physically and see the result; we now want to explain that result mathematically. 
One reason to be interested in this problem is that it’s one of many problems 
that must be solved in order to build a suspension bridge. 

Professor Jerison drew a diagram of the possible positions of the ring in 
lecture by tracing the position of an actual ring on a string held by two students. 
The next step after drawing this diagram is to name and label the variables, as 
shown in Figure 1. 
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Figure 1: Illustration of the Ring on a String problem. 

Physical Principle: The ring settles at the lowest height (lowest potential 
energy), so the problem is to minimize y subject to the constraint that (x, y) is 
on the string. 

Constraint: The length L of the string is fixed. 

x2 + y2 + (x − a)2 + (y − b)2 = L. 

The function y = y(x) is determined implicitly by the constraint equation above. 
We traced the constraint curve (possible positions of the ring) on the blackboard; 
the curve is also suggested in blue in Figure 1. This curve is an ellipse with foci 
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at (0, 0) and (a, b), but knowing that the curve is an ellipse does not help us 
find the lowest point. 

Experiments with the hanging ring show that the lowest point is somewhere 
between x = 0 and x = a. (This is one way we can confirm that the minimum 
solution isn’t at one of the ends of the string; don’t try to use the second 
derivative test.) Since the ends of the constraint curve are higher than the 
middle, the lowest point is a critical point (a point where y�(x) = 0). In class 
we also gave a physical demonstration of this by drawing the horizontal tangent 
at the lowest point. 

To find the critical point, differentiate the constraint equation implicitly with 
respect to x: 

x + yy� x − a + (y − b)y�� + � = 0. 
x2 + y2 (x − a)2 + (y − b)2 

Since y� = 0 a the critical point, the equation can be rewritten as: 

� 
x 

= � 
a − x 

x2 + y2 (x − a)2 + (y − b)2 

From Fig. 1, we see that the last equation can be interpreted geometrically as 
saying that: 

sin α = sin β = α = β, ⇒ 

where α and β are the angles the left and right portions of the string make with 
the vertical. 

Physical and geometric conclusions 

The angles α and β are equal. 
Using vectors to compute the force exerted by gravity on the two halves of 

the string, one finds that there is equal tension in the two halves of the string 
— a physical equilibrium. This is desirable in construction; if one end is under 
more stress than the other, it’s more likely to break. 

From another point of view, the equal angle property expresses a geometric 
property of ellipses: Suppose that the ellipse is a mirror. A ray of light from 
the focus (0, 0) reflects off the mirror according to the rule angle of incidence 
equals angle of reflection, and therefore the ray goes directly to the other focus 
at (a, b). This was used to good effect in the ”Strokes of Genius: Mini Golf by 
Artists” exhibit at the DeCordova museum in the early 1990’s; by placing the 
tee at one focus of an ellipse and the hole at the other, an artist created a golf 
course on which any stroke would end with a hole in one. 

Formulae for x and y 

We did not yet find the location of (x, y). We will now show that: 

a 
� 

b 
� 

1 � � � 
x =

2 
1 − √

L2 − a2 
, y =

2 
b − L2 − a2 . 

2 



� � 

� � 

�� � � 

� � 

� � � 

Because α = β, 

x = x2 + y2 sin α; a − x = (x − a)2 + (y − b)2 sin α 

Adding these two equations, �� � � a 
a = x2 + y2 + (x − a)2 + (y − b)2 sin α = L sin α = ⇒ sin α = 

L 

The equations for the vertical legs of the right triangles are (note that y < 0): 

−y = x2 + y2 cos α; b − y = (x − a)2 + (y − b)2 cos β. 

Adding these two equations, and using α = β, we get: 

b − 2y = x2 + y2 + (x − a)2 + (y − b)2 cos α = L cos α 

= ⇒ 
1 

y = (b − L cos α). 
2 

a 
Use the relation sin α = to write: 

L 

L cos α = L 1 − sin2 α 

= L2 − a2 . 

Then the formula for y is: 

1 
y = b − L2 − a2 . 
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Finally, to find the formula for x, use similar right triangles: 

tan α = 
x 

= 
a − x 

= x(b − y) = (−y)(a − x) = (b − 2y)x = −ay 
−y b − y 

⇒ ⇒ 

Therefore, � � 

x = 
b 
−
− 
ay 
2y 

= 
a 
2

1 − √
L2 

b 

− a2 
. 

Thus we have formulae for x and y in terms of a, b and L. 
This derivation of the formulae for x and y wasn’t covered in lecture be­

cause it is long and because the most illuminating part of the problem is the 
balance condition α = β that is an immediate consequence of the critical point 
computation. 

Final Remark. In 18.02, you will learn to treat constrained max/min 
problems in any number of variables using a method called Lagrange multipliers. 
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