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Cube Root of x 

Show that for any non-zero starting point x0, Newton’s method will never find 
the exact value x for which x3 = 0. 

Solution 

Given a value x0 close to some x where f(x) = 0, Newton’s method usually 
produces a series of values x0, x1, x2, ... whose values approach x. However, 
there is no guarantee that any of those values xi actually equal x. 

Newton’s method generates a sequence according to the formula: 

f(xk) 
xk+1 = xk − 

f �(xk) 
. 

In our example, f(x) = x3 and f �(x) = 3x2, so: 

3xk xk+1 = xk − 
3x2 
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Starting with x0, Newton’s method generates the sequence: 
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3n 
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If x0 = 0, the values of the xi get closer and closer to the desired value 0 but 
never exactly equal zero. 
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