Differentials

Today we move on from differentiation to integration. For this we'll need a new notation for quantities called differentials.

Given a function $y=f(x)$, the differential of y is

$$
d y=f^{\prime}(x) d x
$$

Because $y=f(x)$ we sometimes call this the differential of f. Both $d y$ and $f^{\prime}(x) d x$ are called differentials. You can think of

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

as a quotient of differentials. Get used to this idea; it comes up in many contexts, including this class and multivariable calculus.

This arises from the Leibniz interpretation of a derivative as a ratio of "infinitesimal" quantities; differentials are sort of like infinitely small quantities.

Working with differentials is much more effective than using the notation coined by Newton; good notation can help you think much faster. Leibniz's notation was adopted on the Continent and Newton dominated in Britain; as a result the British fell behind by one or two hundred years in the development of calculus.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

