Differentials and Linear Approximation

Linear approximation allows us to estimate the value of $f(x + \Delta x)$ based on the values of f(x) and f'(x). We replace the change in horizontal position Δx by the differential dx. Similarly, we replace the change in height Δy by dy. (See Figure 1.)

Figure 1: We use dx and dy in place of Δx and Δy .

Example: Find the approximate value of $(64.1)^{\frac{1}{3}}$.

Method 1 (using differentials)

We're going to use a linear approximation of the function $y = f(x) = x^{\frac{1}{3}}$. Our base point will be $x_0 = 64$ because it's easy to compute $y_0 = 64^{\frac{1}{3}} = 4$. By definition, $dy = f'(x)dx = \frac{1}{3}x^{-\frac{2}{3}}dx$.

$$dy = \frac{1}{3}(64)^{-\frac{2}{3}}dx \\ = \frac{1}{3}\frac{1}{16}dx \\ = \frac{1}{48}dx$$

We want to approximate $(64.1)^{\frac{1}{3}}$, so x + dx = 64.1 and $dx = 0.1 = \frac{1}{10}$. At the value $64.1 = x_0 + dx$, f(x) is exactly equal to $y_0 + \Delta y$ (because this is how we defined Δy) and is approximately equal to $y_0 + dy$, where dy is is linear in dx as derived above.

In essence, the point $(x_0 + dx, y_0 + dy)$ is an infinitesimally small step away from (x_0, y_0) along the tangent line. Of course $\frac{1}{10}$ is not infinitesimally small, which is why this is an approximation rather than an exact value.

$$(64.1)^{\frac{1}{3}} \approx y + dy$$

$$\approx 4 + \frac{1}{48}dx$$
$$\approx 4 + \frac{1}{48}\frac{1}{10}$$
$$\approx 4.002$$

Method 2 (review)

When we compare this to our previous notation we discover that the calculations are the same; only the notation has changed.

The basic formula for linear approximation is:

$$f(x) = f(a) + f'(a)(x - a)$$

Here a = 64 and $f(x) = x^{\frac{1}{3}}$, so f(a) = f(64) = 4 and $f'(a) = \frac{1}{3}a^{-\frac{2}{3}} = \frac{1}{48}$ Our approximation then becomes:

$$f(x) \approx f(a) + f'(a)(x-a)$$
$$x^{\frac{1}{3}} \approx 4 + \frac{1}{48}(x-64)$$
$$(64.1)^{\frac{1}{3}} \approx 4 + \frac{1}{48}\frac{1}{10}$$
$$(64.1)^{\frac{1}{3}} \approx 4.002$$

We get the same answer as before, by doing a nearly identical calculation.

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.