Differentials and Linear Approximation

Linear approximation allows us to estimate the value of $f(x+\Delta x)$ based on the values of $f(x)$ and $f^{\prime}(x)$. We replace the change in horizontal position Δx by the differential $d x$. Similarly, we replace the change in height Δy by $d y$. (See Figure 1.)

Figure 1: We use $d x$ and $d y$ in place of Δx and Δy.
Example: Find the approximate value of $(64.1)^{\frac{1}{3}}$.

Method 1 (using differentials)

We're going to use a linear approximation of the function $y=f(x)=x^{\frac{1}{3}}$. Our base point will be $x_{0}=64$ because it's easy to compute $y_{0}=64^{\frac{1}{3}}=4$. By definition, $d y=f^{\prime}(x) d x=\frac{1}{3} x^{-\frac{2}{3}} d x$.

$$
\begin{aligned}
d y & =\frac{1}{3}(64)^{-\frac{2}{3}} d x \\
& =\frac{1}{3} \frac{1}{16} d x \\
& =\frac{1}{48} d x
\end{aligned}
$$

We want to approximate $(64.1)^{\frac{1}{3}}$, so $x+d x=64.1$ and $d x=0.1=\frac{1}{10}$. At the value $64.1=x_{0}+d x, f(x)$ is exactly equal to $y_{0}+\Delta y$ (because this is how we defined Δy) and is approximately equal to $y_{0}+d y$, where $d y$ is is linear in $d x$ as derived above.

In essence, the point $\left(x_{0}+d x, y_{0}+d y\right)$ is an infinitesimally small step away from $\left(x_{0}, y_{0}\right)$ along the tangent line. Of course $\frac{1}{10}$ is not infinitesimally small, which is why this is an approximation rather than an exact value.

$$
(64.1)^{\frac{1}{3}} \approx y+d y
$$

$$
\begin{aligned}
& \approx 4+\frac{1}{48} d x \\
& \approx 4+\frac{1}{48} \frac{1}{10} \\
& \approx 4.002
\end{aligned}
$$

Method 2 (review)

When we compare this to our previous notation we discover that the calculations are the same; only the notation has changed.

The basic formula for linear approximation is:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)
$$

Here $a=64$ and $f(x)=x^{\frac{1}{3}}$, so $f(a)=f(64)=4$ and $f^{\prime}(a)=\frac{1}{3} a^{-\frac{2}{3}}=\frac{1}{48}$
Our approximation then becomes:

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a) \\
x^{\frac{1}{3}} & \approx 4+\frac{1}{48}(x-64) \\
(64.1)^{\frac{1}{3}} & \approx 4+\frac{1}{48} \frac{1}{10} \\
(64.1)^{\frac{1}{3}} & \approx 4.002
\end{aligned}
$$

We get the same answer as before, by doing a nearly identical calculation.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

