Integration by "Advanced Guessing"

Example: $\int \frac{x d x}{\sqrt{1+x^{2}}}$
If we use the method of substitution, we start by setting u equal to the ugliest part of our integral:

$$
u=1+x^{2} \quad \text { and } \quad d u=2 x d x
$$

The calculation looks like:

$$
\begin{aligned}
\int \frac{x d x}{\sqrt{1+x^{2}}} & =\int \frac{\frac{1}{2} d u}{\sqrt{u}} \\
& =\int \frac{u^{-\frac{1}{2}}}{2} d u \\
& =2 \frac{u^{\frac{1}{2}}}{2}+c \\
& =u^{\frac{1}{2}}+c \\
& =\left(1+x^{2}\right)^{\frac{1}{2}}+c \\
& =\sqrt{1+x^{2}}+c
\end{aligned}
$$

A better way to compute this is what we call "advanced guessing". Once you've done enough of these problems that you know what's going to happen, you can look at the $\sqrt{1+x^{2}}$ in the denominator and guess that the answer will involve $\left(1+x^{2}\right)^{1 / 2}$. Once you've made a guess, differentiate it and see if it works!

$$
\begin{aligned}
\frac{d}{d x}\left(1+x^{2}\right)^{\frac{1}{2}} & =\frac{1}{2}\left(1+x^{2}\right)^{-\frac{1}{2}}(2 x) \\
& =\left(1+x^{2}\right)^{-\frac{1}{2}}(x) \\
& =\frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

As you can see, using this method we quickly confirm that:

$$
\int \frac{x d x}{\sqrt{1+x^{2}}}=\left(1+x^{2}\right)^{1 / 2}+c
$$

This method is highly recommended, but it takes some getting used to.
Example: $\int e^{6 x} d x$
We know that the derivative of e^{x} is e^{x}, so we guess $e^{6 x}$. Then we check our guess using the chain rule:

$$
\frac{d}{d x}(e)^{6 x}=e^{6 x}(6)=6 e^{6 x}
$$

This has a multiple of 6 that's not in the integral we're trying to compute, so we should divide our guess by 6 to get the correct answer:

$$
\int e^{6 x} d x=\frac{1}{6} e^{6 x}+c
$$

We could also have used the substitution $u=6 x$. It would have worked, but it would have taken much longer.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

