Differential Equations and Slope, Part 2

Find the curves that are perpendicular to the parabolas $y=a x^{2}$ from the previous example.

We get a new differential equation from the one in the last example by using the fact that if a line has slope m, a line perpendicular to it will have slope $-\frac{1}{m}$. So:

$$
\begin{aligned}
\text { slope of curve } & =\frac{d y}{d x} \\
& =-\frac{1}{\text { slope of parabola }} \\
& =-\frac{1}{\frac{2 y}{x}} \\
\frac{d y}{d x} & =\frac{-x}{2 y}
\end{aligned}
$$

Separate variables:

$$
2 y d y=-x d x
$$

Take the antiderivative:

$$
\begin{aligned}
\int 2 y d y & =\int-x d x \\
y^{2} & =-\frac{x^{2}}{2}+c
\end{aligned}
$$

So the general solution to this differential equation is:

$$
y^{2}+\frac{x^{2}}{2}=c
$$

This describes a family of ellipses. The y-semi-minor axis of these ellipses has length \sqrt{c} and the x-semi-major axis has length $\sqrt{2 c}$; the ratio of the x-semimajor axis to the y-semi-minor axis is $\sqrt{2}$ (see Fig. 1).

Unlike last time, this solution only works when $c>0$. For some problems your constant parameter can be any real value; for some it can't.

Separation of variables leads to implicit formulas for y, but in this case you can solve for y.

$$
y= \pm \sqrt{c-\frac{x^{2}}{2}}
$$

Writing the solution in this form brings an important point to our attention the equation of an ellipse does not describe a function! The explicit solution gives you functions that describe the top and bottom halves of the ellipses

The explicit solution also suggests that there's a problem when $y=0$ and $x= \pm \sqrt{2 c}$. Here the ellipse has a vertical tangent line; also the explicit solution isn't defined for $|x|>\sqrt{2 c}$. This makes sense when we consider the fact that $\frac{d y}{d x}=\frac{-x}{2 y}$. When $y=0$ the slope of the tangent line to the curve should be infinite.

Figure 1: The curves perpendicular to the parabolas are ellipses.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

