The Second Fundamental Theorem of Calculus

We're going to start with a continuous function f and define a complicated function $G(x)=\int_{a}^{x} f(t) d t$. The variable x which is the input to function G is actually one of the limits of integration. The function f is being integrated with respect to a variable t, which ranges between a and x. The variable t is a dummy variable, and is the variable of integration. Don't get t and x mixed up, even if your textbook does.

Theorem: If f is continuous and $G(x)=\int_{a}^{x} f(t) d t$, then $G^{\prime}(x)=f(x)$.
From the point of view of differential equations, $G(x)$ solves the differential equation

$$
y^{\prime}=f, \quad y(a)=0
$$

The second fundamental theorem of calculus tells us that we can always solve this equation (by using Riemann sums if necessary).

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

