Proof of the Second Fundamental Theorem of Calculus

Theorem: (The Second Fundamental Theorem of Calculus) If f is continuous and $F(x)=\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=f(x)$.

Proof: Here we use the interpretation that $F(x)$ (formerly known as $G(x)$) equals the area under the curve between a and x. Our goal is to take the derivative of F and discover that it's equal to f.

Figure 1: Graph of $f(x)$ with shaded area $F(x)$.

We graph the equation $y=f(x)$ and keep track of where a, x and $x+\Delta x$ are. This splits the area under the curve into pieces. The first piece is the area under the curve between a and x which is, by definition, $F(x)$. The second piece is a thin region; its area is ΔF, which is the change in the area under the curve as x increases by Δx.

We now approximate this thin region with area ΔF by a rectangle. Its base has width Δx and its height is close to $f(x)$ (because f is continuous). So

$$
\Delta F \approx \Delta x f(x)
$$

Divide both sides by Δx to get $\frac{\Delta F}{\Delta x} \approx f(x)$, then take the limit as Δx goes to zero to get the derivative:

$$
F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta F}{\Delta x}=f(x)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

