Proof of the First Fundamental Theorem of Calculus

The first fundamental theorem says that the integral of the derivative is the function; or, more precisely, that it's the difference between two outputs of that function.

Theorem: (First Fundamental Theorem of Calculus) If f is continuous and $F^{\prime}=f$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Proof: By using Riemann sums, we will define an antiderivative G of f and then use $G(x)$ to calculate $F(b)-F(a)$

We start with the fact that $F^{\prime}=f$ and f is continuous. (It's not strictly necessary for f to be continuous, but without this assumption we can't use the second fundamental theorem in our proof.)

Next, we define $G(x)=\int_{a}^{x} f(t) d t$. (We know that this function exists because we can define it using Riemann sums.)

The second fundamental theorem of calculus tells us that:

$$
G^{\prime}(x)=f(x)
$$

So $F^{\prime}(x)=G^{\prime}(x)$. Therefore,

$$
(F-G)^{\prime}=F^{\prime}-G^{\prime}=f-f=0
$$

Earlier, we used the mean value theorem to show that if two functions have the same derivative then they differ only by a constant, so $F-G=$ constant or

$$
F(x)=G(x)+c .
$$

This is an essential step in an essential proof; all of calculus is founded on the fact that if two functions have the same derivative, they differ by a constant.

Now we compute $F(b)-F(a)$ to see that it is equal to the definite integral:

$$
\begin{aligned}
F(b)-F(a) & =(G(b)+c)-(G(a)+c) \\
& =G(b)-G(a) \\
& =\int_{a}^{b} f(t) d t-\int_{a}^{a} f(t) d t \\
& =\int_{a}^{b} f(t) d t-0 \\
F(b)-F(a) & =\int_{a}^{b} f(x) d x
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

