Area Under the Bell Curve

In addition to exotic but familiar functions like $\ln x$, we can also use definite integrals and Riemann sums to get truly new functions.

Example: The solution to $y^{\prime}=e^{-x^{2}} ; y(0)=0$ is:

$$
F(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

The graph of $e^{-x^{2}}$ is known as the bell curve, and $F(x)$ describes the area under the curve. This function is extremely useful for computing probabilities.

Figure 1: Graph of $e^{-x^{2}}$.
The exciting thing about $F(x)$ is that although we have a geometric definition and can compute it using Riemann sums, we can't describe it in terms of any function we've seen previously, including logarithmic and trigonometric functions. It's a completely new function. The problem of describing F is analogous to the problem of calculating the value of π - the area of a circle with radius 1. The number π is transcendental; it is not the root (zero) of an algebraic equation with rational coefficients.

Using definite integrals we can define a huge class of new functions, many of which are important tools in science and engineering.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

