Logs and Exponents

a) Prove that for $x>1$:

$$
a \int_{1 / x}^{1} \frac{1}{t} d t=\int_{(1 / x)^{a}}^{1} \frac{1}{t} d t .
$$

b) Assume $x>1$. What is the geometric interpretation of the result of part a?
c) What does this tell you about the area between the x-axis and the graph of $\frac{1}{x}$ over the interval from 0 to 1 ?

Solution

a) Prove that for $x>1$:

$$
a \int_{1 / x}^{1} \frac{1}{t} d t=\int_{(1 / x)^{a}}^{1} \frac{1}{t} d t .
$$

Don't be intimidated by the word "prove" - to solve this problem we need only evaluate two definite integrals and remark that they're equal!

$$
\begin{aligned}
a \int_{1 / x}^{1} \frac{1}{t} d t & =\left.a \ln (t)\right|_{1 / x} ^{1} \\
& =a(\ln (1)-\ln (1 / x)) \\
& =-a \ln (1 / x)=a \ln (x) \\
\int_{(1 / x)^{a}}^{1} \frac{1}{t} d t & =\left.\ln (t)\right|_{(1 / x)^{a}} ^{1} \\
& =\ln (1)-\ln \left((1 / x)^{a}\right) \\
& =-a \ln (1 / x)=a \ln (x)
\end{aligned}
$$

By evaluating the definite integrals we see that their values are equal.
b) Assume $x>1$. What is the geometric interpretation of the result of part a? Because $\int_{c}^{1} \frac{1}{t} d t$ equals the area between the graph of $y=\frac{1}{t}$ and the t-axis over the interval from c to 1 , our answer to (a) tells us:

The area under the graph of $\frac{1}{t}$ between $(1 / x)^{a}$ and 1 is a times as large as the area under the graph of $\frac{1}{t}$ between $1 / x$ and 1 .
c) What does this tell you about the area between the x-axis and the graph of $\frac{1}{x}$ over the interval from 0 to 1 ?
As a grows large, $(1 / x)^{a}$ approaches 0 . Even if the area under the graph of $\frac{1}{t}$ between $1 / x$ and 1 is very small, the value of a times that area will go to infinity as a does. In other words, the area between the graph of $\frac{1}{x}$ and the x-axis over the interval between 0 and 1 is infinite.
We will explore this further in our discussion of indefinite integrals, near the end of the course.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

