Probability Function

A Poisson process is a situation in which a phenomenon occurs at a constant average rate. Each occurrence is independent of all other occurrences; in a Poisson process, an event does not become more likely to occur just because it's been a long time since its last occurrence. The location of potholes on a highway or the emission over time of particles from a radioactive substance may be Poisson processes.

The probability density function:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

describes the relative likelihood of an occurrence at time or position x, where λ describes the average rate of occurrence.

The probability $P(a<x<b)$ of an event occurring in the interval between a and b is given by:

$$
\int_{a}^{b} f(x) d x
$$

Compute this integral:
a) for the case in which a and b are both positive (assume $a<b$),
b) for the case in which $a \leq 0$ and $b>0$,
c) for the case in which $a \leq 0$ and $b \leq 0$.

Solution

The solutions appear in reverse order of complexity; you may wish to start with the last and work back to the first.
a) Calculate $\int_{a}^{b} f(x) d x$ for the case in which a and b are both positive (assume $a<b$).

Because $x>0$ over the entire interval from a to b,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} \lambda e^{-\lambda x} d x
$$

The antiderivative of $\lambda e^{-\lambda x}$ is $-e^{-\lambda x}$; from this point the calculation is straightforward.

$$
\begin{aligned}
\int_{a}^{b} \lambda e^{-\lambda x} d x & =-\left.e^{-\lambda x}\right|_{a} ^{b} \\
& =-e^{-\lambda b}-\left(-e^{-\lambda a}\right) \\
& =e^{-\lambda a}-e^{-\lambda b}
\end{aligned}
$$

Given a Poisson distribution with rate parameter λ and $b \geq a>0$, the probability of an event occurring in the interval $[a, b]$ is $e^{-\lambda a}-e^{-\lambda b}$.
b) Calculate $\int_{a}^{b} f(x) d x$ for the case in which $a \leq 0$ and $b>0$.

We haven't done many examples of integration of piecewise defined functions, but we can use the geometric interpretation of the definite integral to determine what we must do.
On the interval $[a, 0], f(x)=0$ so the area under that part of the graph of $f(x)$ is 0 . On the interval $[b, 0], f(x)=\lambda e^{-\lambda x}$. The area under the graph of $f(x)$ between a and b must be:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{0} f(x) d x+\int_{0}^{b} f(x) d x \\
& =0+\int_{0}^{b} \lambda e^{-\lambda x} d x \\
& =-\left.e^{-\lambda x}\right|_{0} ^{b} \\
& =-e^{-\lambda b}-\left(-e^{-\lambda \cdot 0}\right) \\
& =1-e^{-\lambda b}
\end{aligned}
$$

c) Calculate $\int_{a}^{b} f(x) d x$ for the case in which $a \leq 0$ and $b \leq 0$.

This calculation is trivial. On the interval $[a, b], f(x)=0$. The area between the graph of f and the x-axis is 0 , so:

$$
\int_{a}^{b} f(x) d x=0 \quad \text { when } a, b \leq 0 .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

