Warning about units.

Previously, we calculated the volume of a parabolic "cauldron" to be $\frac{\pi}{2} a^{2}$. There's something fishy about this expression - it looks as if it has units of area, but it's describing a volume. In general, we must be very aware of what units we're using.

Suppose the height of the cauldron is $a=100 \mathrm{~cm}$. Then:

$$
\begin{aligned}
V & =\frac{\pi}{2}(100)^{2} \mathrm{~cm}^{3} \\
& =\frac{\pi}{2} 10^{4} \mathrm{~cm}^{3} \\
& =\frac{\pi}{2} 10 \sim 16 \text { liters }
\end{aligned}
$$

Next, suppose that the height of the cauldron is $a=1 \mathrm{~m}$. Then:

$$
\begin{aligned}
V & =\frac{\pi}{2}(1)^{2} \mathrm{~m}^{3} \\
& =\frac{\pi}{2} 10^{6} \mathrm{~cm}^{3} \\
& =\frac{\pi}{2} 1000 \sim 1600 \text { liters }
\end{aligned}
$$

But $100 \mathrm{~cm}=1 \mathrm{~m}$. Why are the answers different?
The problem is that we don't know the units in the equation $y=x^{2}$. If the units are centimeters, then $100 \mathrm{~cm}=10^{2} \mathrm{~cm}$. If the units are meters then 1 m $=1^{2} \mathrm{~m}$. When we use centimeters as units, the cauldron is five times as tall as it is wide, so it looks like:

Figure 1: Cauldron cross section for units of centimeters.
When we interpret $y=x^{2}$ in meters, we find that the cauldron is twice as wide as it is tall, which seems more likely in the context of the problem.

This confusion about units arose because the equation $y=x^{2}$ is not scaleinvariant.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

