Probability Example

Figure 1: Choose a point at random.
Probability, volumes and weighted averages are three of the most important applications of integration. We'll analyze the probability experiment of picking a point "at random" in the region bounded below by $y=0$ and above by $y=1-x^{2}$. Inside this parabolic region, the probability of picking a point in a given location is proportional to the area of the location.

What is the chance that $x>1 / 2$? In other words, for a point picked at random, what is the probability that $x>1 / 2$? Or, what is $P(x>1 / 2)$?

$$
\begin{aligned}
\text { Probability } & =\frac{\text { Part }}{\text { Whole }} \\
& =\frac{\text { Target Area }}{\text { Entire Area }} \\
& =\frac{\text { Success }}{\text { All Possibilities }}
\end{aligned}
$$

Figure 2: What is the probability that $x>\frac{1}{2}$?
The probability will just be the ratio of the two areas:

$$
\frac{\int_{1 / 2}^{1}\left(1-x^{2}\right) d x}{\int_{-1}^{1}\left(1-x^{2}\right) d x}
$$

If we like, we can think of this as a weighted average with $w(x)=1-x^{2}, a=-1$, $b=1$ and:

$$
\begin{gathered}
f(x)= \begin{cases}0 & \text { when } x<1 / 2 \\
1 & \text { when } x \geq 1 / 2\end{cases} \\
\begin{aligned}
P(x>1 / 2) & =\frac{\int_{1 / 2}^{1}\left(1-x^{2}\right) d x}{\int_{-1}^{1}\left(1-x^{2}\right) d x} \\
& =\frac{\left.\left(x-\frac{x^{3}}{3}\right)\right|_{1 / 2} ^{1}}{\left.\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{1}} \\
& =\frac{\left(\frac{2}{3}-\frac{11}{24}\right)}{\left(\frac{2}{3}-\left(-\frac{2}{3}\right)\right)} \\
& =\frac{5}{24} \div \frac{4}{3} \\
& =\frac{5}{32}
\end{aligned}
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

