Review of Riemann Sums

Figure 1: The area under the curve is divided into n regions of equal width.

As was mentioned at the start of this unit, Riemann sums approximate the area between the x-axis and a curve over the interval $[a, b]$ by a sum of areas of rectangles. Each rectangle has width $x_{i}-x_{i-1}=\Delta x$; there are n rectangles whose sides have x-coordinates $a=x_{o}<x_{1}<x_{2} \ldots<x_{n}=b$. The heights of the rectangles are $y_{o}=f\left(x_{o}\right), y_{1}=f\left(x_{1}\right), \ldots, y_{n-1}=f\left(x_{n-1}\right)$ (if the left edge of each rectangle is exactly as high as the graph).

Our goal is to "average" or add these y-values to get an approximation to

$$
\int_{a}^{b} f(x) d x
$$

The formula for the (left) Riemann sum is:

$$
\left(y_{0}+y_{1}+\ldots+y_{n-1}\right) \Delta x .
$$

If we let the right hand side of each rectangle be as high as the graph, using right endpoints instead of the left endpoints, we get the right Riemann sum:

$$
\left(y_{1}+y_{2}+\ldots+y_{n}\right) \Delta x
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

