
Numerical Integration 

Compare the trapezoidal rule to the left Riemann sum. The area of each trape
zoid is calculated using twice as much information (left and right endpoints) as 
the area of each rectangle. This leads one to expect that applying the trape
zoidal rule with n = 6 should produce a result comparable to the one obtained 
from a Riemann sum with n = 12. 

a) Open the Riemann Sums mathlet. Set the function to x3 − 2x and select 
the trapezoidal rule. Make sure n = 6. Record the mathlet’s estimate of the 
integral. 

b) Select “Evaluation point” to change to the Riemann sum approximation. 
Move the slider to 0.5, setting the evaluation point to be the midpoint of the 
interval. Set n equal to 12 and record the mathlet’s estimate of the integral. � 2 

c) Calculate x 3 − 2x dx by hand. Was the accuracy of the Riemann sum 
−1 

with n = 12 comparable to that of the trapezoidal rule with n = 6? Why or 
why not? 

Solution 

a) Open the Riemann Sums mathlet. Set the function to x3 − 2x and select 
the trapezoidal rule. Make sure n = 6. Record the mathlet’s estimate of the 
integral. 

Estimate = 0.93750 

b) Select “Evaluation point” to change to the Riemann sum approximation. 
Move the slider to 0.5, setting the evaluation point to be the midpoint of the 
interval. Set n equal to 12 and record the mathlet’s estimate of the integral. 

Estimate = 0.72656 
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c) Calculate x 3 − 2x dx by hand. Was the accuracy of the Riemann sum 
−1 

with n = 12 comparable to that of the trapezoidal rule with n = 6? Why or 
why not? 
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In this case, the Riemann sum gives a much more accurate estimate than 
the trapezoidal rule. 

Although computing the area of each individual trapezoid requires more 
information than computing the area of a rectangle, the trapezoidal rule as 
a whole uses only one more piece of information than the left Riemann sum 
does. Compare the two formulas: 

yo yn
trapezoidal rule estimate = Δx + y1 + y2 + ... + yn−1 + ,

2 2

left Riemann sum estimate = Δx (y0 + y1 + y2 + ... + yn−1) .


For a large enough number n of subdivisions, the results obtained using 
the trapezoidal rule are very similar to those obtained using Riemann sums; 
verify this using the mathlet. As Professor Jerison mentioned in lecture, the 
estimate given by the trapezoidal rule is exactly equal to the average of the 
left Riemann sum and the right Riemann sum. 

In contrast, doubling the number of subdivisions does approximately double 
the amount of information used in an approximation and so significantly 
improves the estimate’s likelihood of being close to the exact answer. 
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