## Trapezoid Rule Approximation of $\int_{1}^{2} \frac{d x}{x}$

Continuing our discussion of numerical integration, we'll look at:

$$
\int_{1}^{2} \frac{d x}{x}
$$

Of course we already know:

$$
\begin{aligned}
\int_{1}^{2} \frac{d x}{x} & =\left.\ln x\right|_{1} ^{2} \\
& =\ln 2-\ln 1 \\
& =\ln 2
\end{aligned}
$$

We can use a calculator to find that this value is approximately 0.693147 .
Numerical methods allow us to estimate integrals with accuracy about equal to our accuracy in estimating the integrand. We can approximate the value of $1 / x$ pretty well, so we can get a pretty accurate estimate of the value of $\ln 2$. To make life even easier for ourselves, we'll do a very simple case of the approximation - we'll only use two intervals.


Figure 1: Two intervals; three points on the hyperbola.
We can't expect to get a very good approximation of $\ln 2$ using only two intervals. With only two intervals, we're making estimates of the area under a hyperbola based on only three points (see Figure 1).

## Trapezoidal Rule

The trapezoidal rule gives us the following formula for the area under the curve:

$$
\text { Area } \approx \Delta x\left(\frac{1}{2} y_{0}+y_{1}+\frac{1}{2} y_{2}\right) .
$$

In this case $\Delta x=\frac{b-a}{n}=\frac{1}{2}$ because $b=2, a=1$ and $n=2$. By evaluating $y_{i}=f\left(x_{i}\right)=\frac{1}{1+\frac{1}{2} i}$ and plugging these values in, we get:

$$
\text { Area } \approx \frac{1}{2}\left(\frac{1}{2} \cdot 1+\frac{2}{3}+\frac{1}{2} \cdot \frac{1}{2}\right)
$$

You wouldn't have to perform this addition on an exam, but if there are only two terms you should add them together. When we do put these numbers into a calculator, we find that the trapezoidal rule gives an estimate of about 0.708 for the area of this region; that's pretty close under the circumstances!

MIT OpenCourseWare
http://ocw.mit.edu

### 18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

