Using Simpson's Rule for the normal distribution

This problem uses Simpson's rule to approximate a definite integral important in probability.
In our probability unit, we learned that when given a probability density function $f(x)$, we may compute the probability P that an event x is between a and b by calculating the definite integral:

$$
P(a \leq x \leq b)=\int_{a}^{b} f(x) d x
$$

Here we're assuming that a probability density function $f(x)$ has the property that

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

In the next session, we will show that $f(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}}$ is a probability density function with this property. For now, we assume this property.

Question: Suppose the probability density function for American male height is roughly (in inches x)

$$
h(x)=\frac{1}{2.8 \sqrt{2 \pi}} e^{-(x-69)^{2} / 5.6} .
$$

- Use Simpson's rule to estimate the probability that an American male is between 5 and 6 feet tall.
- Use Simpson's rule to estimate the probability that an American male is over 8 feet tall.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

