Using Simpson's Rule for the normal distribution

This problem uses Simpson's rule to approximate a definite integral important in probability.
In our probability unit, we learned that when given a probability density function $f(x)$, we may compute the probability P that an event x is between a and b by calculating the definite integral:

$$
P(a \leq x \leq b)=\int_{a}^{b} f(x) d x
$$

Here we're assuming that a probability density function $f(x)$ has the property that

$$
\int_{-\infty}^{\infty} f(x) d x=1 .
$$

In the next session, we will show that $f(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}}$ is a probability density function with this property. For now, we assume this property.

Question: Suppose the probability density function for American male height is roughly (in inches x)

$$
h(x)=\frac{1}{2.8 \sqrt{2 \pi}} e^{-(x-69)^{2} / 5.6} .
$$

- Use Simpson's rule to estimate the probability that an American male is between 5 and 6 feet tall.
- Use Simpson's rule to estimate the probability that an American male is over 8 feet tall.

Solution:

For the first part, 5 feet $=60$ inches and 6 feet $=72$ inches, so we must compute

$$
P(60 \leq x \leq 72)=\int_{60}^{72} h(x) d x=\int_{60}^{72} \frac{1}{2.8 \sqrt{2 \pi}} e^{-(x-69)^{2} / 5.6} d x
$$

(NOTE: We've seen that $e^{-x^{2}}$ has no elementary antiderivative, so we can't just compute the definite integral using the Fundamental Theorem of Calculus. Some numerical integration is required.)

We can make a table of values of $h(x)$ using a calculator (rounded to three decimal places):

x	$h(x)$
60	$7.45 * 10^{-8}$
62	$2.26 * 10^{-5}$
64	$1.60 * 10^{-3}$
66	$2.86 * 10^{-2}$
68	0.119
70	0.119
72	$2.86 * 10^{-2}$

Now using Simpson's rule, we estimate the definite integral to be:

$$
\frac{\Delta x}{3}(h(60)+4 h(62)+2 h(64)+4 h(66)+2 h(68)+4 h(70)+h(72))
$$

where our width Δx of each interval is 2 inches. This is approximately .574 (or 57.4 percent).
For the second part, we need to make some assumptions about the normal distribution since, strictly speaking, the probability would be given by

$$
P(8<x<\infty)=\int_{8}^{\infty} h(x) d x .
$$

We don't expect many people to be over 8 feet 4 inches. Indeed, $h(100)$ is extremely small and h is decreasing. So we may estimate the above integral to high accuracy using the definite integral from $x=96$ to $x=100$, which in turn may be estimated by Simpson's rule. Making a similar table:

x	$h(x)$
96	$4.15 * 10^{-58}$
98	$8.55 * 10^{-67}$
100	$4.22 * 10^{-76}$

Then Simpson's rule estimates the integral:

$$
\int_{96}^{100} h(x) d x=\frac{2}{3}(h(96)+4 h(98)+h(100))=2.77 * 10^{-58}
$$

This is a very small number, and so even though there are over 300 million Americans, of which roughly half are male, we expect essentially no chance of seeing a person over 8 feet tall based on our model using the normal distribution.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus
 Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

