## Example: Length of a Parabola



Figure 1: Arc length of $y=x^{2}$ over $0 \leq x \leq a$.
To find the arc length of a parabola we start with:

$$
\begin{aligned}
y & =x^{2} \\
y^{\prime} & =2 x \\
d s & =\sqrt{1+(2 x)^{2}} d x \\
& =\sqrt{1+4 x^{2}} d x .
\end{aligned}
$$

So the arc length of the parabola over the interval $0 \leq x \leq a$ is:

$$
\int_{0}^{a} \sqrt{1+4 x^{2}} d x
$$

This is the answer to the question, but it would be more useful to us if we could write it in a simpler form. That's why we studied techniques of integration. To evaluate this integral we use the following trig substitution:

$$
\begin{aligned}
x & =\frac{1}{2} \tan u \\
d x & =\frac{1}{2} \sec ^{2} u
\end{aligned}
$$

When we do, we find that:

$$
\int_{0}^{a} \sqrt{1+4 x^{2}} d x=\left[\frac{1}{4} \ln \left(2 x+\sqrt{1+4 x^{2}}\right)+\frac{1}{2} x \sqrt{1+4 x^{2}}\right]_{0}^{a}
$$

(you may have seen parts of this calculation in a recitation video).

MIT OpenCourseWare
http://ocw.mit.edu

### 18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

