MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Problem Set 6

Due Thursday 10/18/07, 12:45 pm

Part A (8 points)

Hand in the underlined problems only; the others are for more practice.
Lecture 15. Thu Oct. 11 Non-independent variables.
Read: Notes N (pp. 0-5).
Work: 2J/ $\underline{1}, \underline{2}, 3 \underline{a} b, 4 a \underline{b}, \underline{5 a}, 6, \underline{7}$.

Lecture 16. Fri Oct. 12
Read: Notes P.
Work: $2 \mathrm{~K} / 1,2,3, \underline{4}, \underline{5}$.
Lecture 17. Tue Oct. 16

Partial differential equations. Review.

Exam 2 covering lectures 9-16

Part B (8 points)

Directions: Attempt to solve each part of each problem yourself. If you collaborate, solutions must be written up independently. It is illegal to consult materials from previous semesters. With each problem is the day it can be done.

Write the names of all the people you consulted or with whom you collaborated and the resources you used.

Problem 1. (Thursday, 4 points)
Suppose that $g(x, y)=c$ a constant and $w=f(x, y, z)$. Which of the following makes sense as the derivative $\partial w / \partial x$? (If so, compute it in terms of the formal derivatives f_{x}, f_{y}, f_{z}, g_{x}, and g_{y}. If not, explain why not.)
i) $\left(\frac{\partial w}{\partial x}\right)_{x}$
ii) $\left(\frac{\partial w}{\partial x}\right)_{y}$
iii) $\left(\frac{\partial w}{\partial x}\right)_{z}$

Problem 2. (Thursday, 4 points: $2+2$)
a) Suppose that $t=\sin (x+y)$ and $w=x^{3} y t$. Find $(\partial w / \partial t)_{x}$.
b) Consider the curve of points (x, y, z) satisfying $x^{5}+y z=3$ and $x y^{2}+y z^{2}+z x^{2}=7$. Use the method of total differentials to find $d x / d y$ at $(x, y, z)=(1,1,2)$.

