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V12. Gradient Fields in Space 

1. The criterion for gradient fields. The curl in space. 

We seek now to generalize to space our earlier criterion (Section V2) for gradient fields 
in the plane. 

Cri ter ion for a Gradient  Field. Let F = M i  + N j  + P k  be continuously 
differentiable. Then 

Proof. Since F = Vf ,  when written out this says 

d f  d fM = - ,  N = - .  p = - .df therefore 
dx dy dz ' 

d M  d2f- - - d2f - d N  
dy dydx dxdy dx ' 

The two mixed partial derivatives are equal since they are continuous, by the hypothesis 
that F is continuously differentiable. 

The other two equalities in (1) are proved similarly. 

Though the criterion looks more complicated to remember and to check than the one in 
two dimensions, which involves just a single equation, it is not difficult to  learn and apply. 
For theoretical purposes, it can be expressed more elegantly by using the three-dimensional 
vector curl F. 

Definition. Let F = M i + N j + Pk be differentiable. We define curl F by 

(3) curl F = (P, -N,) i + (M, - P,) j + (N, -My)k 

i j k 
= a, a, a, d 

(symbolic notation; d, = - etc.)
d x '  M N P 

d d d 
= V x F ,  where V = - i  - k

dx 
+ -j  + 

dy dz 

The equation (3) is the definition. The other two lines give symbolic ways of writing and 
of remembering the right side of (3). Neither the first nor second row of the determinant 
contains the sort of thing you are allowed to put into a determinant; however, if you "eval-
uate" it using the Laplace expansion by the first row, what you get is the right side of (3). 
Similarly, to evaluate the symbolic cross-product in (311),we use the determinant (3'). In 

d d M
doing these, by the "product" of - and M we mean -.ax ax 

By using the vector field curl F ,  our criterion (1) becomes 
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In dealing with a plane vector field F = M(x, y) i + N(x, y) j , we gave the name curl F 
to the scalar function N, - My, whereas for a vector field F in space, curl F is a vector 
function. However, if we think of the two-dimensional field F as a field in space (i.e., one 
with zero k -component and not depending on z) , then using definition (3) you can compute 
that 

curl F = (N, - My) k . 

Thus curl F has only a k -component, so if we are dealing just with two-dimensional fields, 
it is natural to give the name curl F just to this k-component. This is not a universally 
accepted terminology, however; some call it the "scalar curl", others don't use any name at  
all for N, - My. 

Naturally, the question arises as to whether the converse of (1') is true - if curl F = 0, 
is F a gradient field? As in two dimensionas, this requires some sort of restriction on the 
domain, and we will return to this point after we have studied Stokes' theorem. For now 
we will assume the domain is the whole three-space, in which case it is true: 

Theorem. If F is continuously differentiable for all x, y, z,  

(4) curl F = 0 F = Vf ,  for some differentiable f (x, y, z). 

We will prove this later. If F is a gradient field, we can calculate the corresponding 
(mathematical) potential function f (x, y, z) by the three-dimensional analogue of either of 
the two methods described before (Section V2). We illustrate with an example. 

Example 1. For what value(s), if any, of c will F = y i + (x +cyz) j + (y2+z2) k be 
a conservative (i.e., gradient) field? For each such c, find a corresponding potential function 
f(x1y1z). 

Solution. Using (1) and (4), we calculate the relevant partial derivatives: 

Thus all three equations in (1) are satisfied H c = 2. For this value of c, we now find 
f (x, y, z) by two methods. 

Method 1. We use the second fundamental theorem (Section V11, ( l l ) ) ,  taking (O,0,0) 
as a convenient lower limit for the integral, and using the subscript 1on the upper limit to 
avoid confusion with the variables of integration. This gives 

Since the integral is path-independent for the choice c = 2, we can use any path. The 
usual choice is the path illustrated, consisting of three line segments C1, C2 and C3. The 
parametrizations for them are (don't write these out yourself -we are only doing it here 
this first time to make it clear how the line integral is being calculated): 

C1: x = x ,  y =O, z = O ;  thus dx = dx, dy = 0, dz = 0; 

C 2 :  x = x l ,  y = y, z = O ;  thus dx=O,  dy =dy,  d z = 0 ;  

C 3 :  x = x 1 ,  y = 91, Z = Z ;  thus dx=O,  dy = 0 ,  dz = d z .  
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Using these, we calculate the line integral (5) over each of the Ci in turn: 

Dropping subscripts, we have therefore by (5), 

where we have added an arbitrary constant of integration to compensate for our arbitary 
choice of (O,0, 0) as the lower limit of integration -a different choice would have added a 
constant to the right side of (6). 

The work should always be checked; from (6) one sees easily that Vf = F, the field we 
started with. 

Method 2. This requires no line integrals, but the work must be carried out systemati- 
cally, otherwise you'll get lost in a mess of equations. 

We are looking for an f (x, y, z) such that (f,, f,, f,) = (y, x + 2yz, y2 + z2). This is 
equivalent to the three equations 

From the first equation, integrating with respect to x (holding y and z fixed), we get 

(8) f ( x , Y , z ) = x Y + g ( Y , z ) ,  g is an arbitrary function 

from (8) 

= x + 2 y z  from (7), second equation; comparing, 

- = 29, Integrating with respect to y, 
dY 

S(Y, z) = Y2z + h(z), h is an arbitrary function; thus 

(9) f (x, y, z) = xy + y2z + h(z), from the preceding and (8) 

= Y2 + z 2 ,  from (7), third equation; comparing, 

ht(z) = z2, 
1

h ( ~ )= -z3 + C; finally, by (9) 
3 

1
f(x ,y ,z)  = x y +  Y 2 z +  --z3 + C  as in Method 1.

3 
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2. Exact differentials 

Just as we did in the two-dimensional case, we translate the previous ideas into the 
language of differentials. 

The formal expression 

which appears as the integrand in our line integrals is called a differential. If f (x, y, z) is a 
differentiable function, then its total differential (or just differential) is defined to be 

The differential (10) is said to be exact, in some domain D where M, N and P are defined, 
if it is the total differential of some differentiable function f (x, y, z) in this domain, that is, 
if there exists an f (x, y, z) in D such that 

Criterion for exact differentials. Let D be a domain in which M, N,  P are continu- 
ously differentiable. Then in D,  

(13) M d x + N d y + P d z  isexact j P y = N z ,  M z = P x ,  N, = M y ;  

if D is all of 3-space, then the converse is true: 

(14) P y = N z ,  M z = P z ,  N z = M y  + M d x + N d y + P d z  isexact. 

If the test in this criterion shows that the differential (10) is exact, the function f (x, y, z) 
may be found be either method 1 or method 2. The converse (14) is true under weaker 
hypotheses about D,  which we will come back to after we have taken up Stokes' Theorem. 

Exercises: Section 6E 




