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V5. Simply-Connected Regions 

1. The Extended Green's Theorem. 

In the work on Green's theorem so far, it has been assumed that the region R has as 
its boundary a single simple closed curve. But this isn't necessary. Suppose the region 
has a boundary composed of several simple closed curves, like the 
ones pictured. We suppose these boundary curves C1,. . . ,C, all 
lie within the domain where F is continuously differentiable. Most 
importantly, all the curves must be directed so that the normal n 
points away from R. 

Extended Green's Theorem With the curve orientations as  shown, 

In other words, Green's theorem also applies to regions with several boundary curves, pro-
vided that we take the line integral over the complete boundary, with each part of the 
boundary oriented so the normal n points outside R. 

Proof. We use subdivision; the idea is adequately conveyed by an exam-
ple. Consider a region with three boundary curves as shown. The three cuts 
illustrated divide up R into two regions R1 and R2, each bounded by a single 
simple closed curve, and Green's theorem in the usual form can be applied to 
each piece. Letting B1 and B2 be the boundary curves shown, we have therefore 

(2) f F dr = u,curl F dA h2F . dr = IS,,curl F dA 
B1 ' II--1 

Add these two equations together. The right sides add up to the right side of 
(1). The left sides add up to the left side of (1) (for m = 2), since over each of 
the three cuts, there are two line integrals taken in opposite directions, which 
therefore cancel each other out. 

2. Simply-connected and multiply-connected regions. 

Though Green's theorem is still valid for a region with "holes" like the ones we just 
considered, the relation curl F = 0 + F = Vf is not. The reason for this is as follows. 

We are trying to show that curl F = 0 + 
for any closed curve lying in R. We expect to be able to use Green's 
theorem. But if the region has a hole, like the one pictured, we cannot ap-
ply Green's theorem to the curve C because the interior of C is not entirely 

,,.,-. . contained in R. 

To see what a delicate affair this is, consider the earlier Example 2 in Section V2. The 
field G there satisfies curl G = 0 everywhere but the origin. The region R is the xy-plane 
with (0,O) removed. But G is not a gradient field, because fc G . dr # 0 around a circle 
C surrounding the origin. 

This is clearer if we use Green's theorem in normal form (Section V4). If 
the flow field satisfies div F = 0 everywhere except at one point, that doesn't 
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guarantee that the flux through every closed curve will be 0. For the spot where 
div F is undefined might be a source, through which fluid is being added to the 
flow. 

In order to be able to prove under reasonable hypotheses that curl F = 0 + F = Vf ,  
we define our troubles away by assuming that R is the sort of region where the difficulties 
described above cannot occur-i.e., we assume that R has no holes; such regions are called 
simply-connected. 

Definition. A two-dimensional region D of the plane consisting of one connected piece 
is called simply-connected if it has this property: whenever a simple closed curve C lies 
entirely in D,  then its interior also lies entirely in D.  

As examples: the xy-plane, the right-half plane where x 2 0, and the unit circle with its 
interior are all simply-connected regions. But the xy-plane minus the origin is not simply- 
connected, since any circle surrounding the origin lies in D,  yet its interior does not. 

As indicated, one can think of a simply-connected region as one without "holes". Regions 
with holes are said to be multiply-connected, or not simply-connected. 

Theorem. Let F = M i  + Nj be continuously differentiable in a simply-connected 
region D of the xy-plane. Then in D,  

(3) curl F = 0 + F = Vf ,  for some f (x, y); in terms of components, 

Proof. Since a field is a gradient field if its line integral around any closed path is 0, it 
suffices to show 

curl F = 0 + F . dr = 0 for every closed curve C in D.  

We prove (4) in two steps. 

Assume first that C is a simple closed curve; let R be its interior. Then since D is simply- 
connected, R will lie entirely inside D.  Therefore F will be continuously differentiable in R,  
and we can use Green's theorem: 

Next consider the general case, where C is closed but not simple--i.e., it intersects itself. 
Then C can be broken into smaller simple closed curves for which the above argument will 
be valid. A formal argument would be awkward to give, but the examples illustrate. In 
both cases, the path starts and ends a t  P, and 

k ~ . d ~ = L ~ ~ . d ~ + k ~ . d ~ + L ~ ~ . d r .  

In both cases, C2 is a simple closed path, and also Cl +C3is a simple closed 
path. Since D is simply-connected, the interiors automatically lie in D ,  so 
that by the first part of the argument, 
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Adding these up, we get 

The above argument works if C intersects itself a finite number of times. If C intersects 
itself infinitely often, we would have to resort to approximations to C; we skip this case. 

We pause now to summarize compactly the central result, both in the language of vector 
fields and in the equivalent language of differentials. 

Curl Theorem. Let F = Mi + Nj be a continuously differentiable vector field 
in a simply-connected region D of the xy-plane. Then the following four statements are 
equivalent - if any one is true for F in D ,  so are the other three: 

1. [F - dr is path-independent 1.' J6) M dx + N dy is path-independent 

for any two points P,Q in D ;  

for any simple closed curve C lying in D; 

3. F = Vf for some f in D 3.' M dx + N dy = df for some f in D 

4. curl F = 0 in D 4.' My = N, in D. 

Remarks. We summarize below what still holds true even if one or more of the 
hypotheses doesn't hold: D is not simply-connected, or the field F is not differentiable 
everywhere in D. 

1. Statements 1, 2, and 3 are equivalent even if F is only continuous; D need not be 
simply-connected.. 

2. Statements 1, 2, and 3 each implies 4, if if F is continuously differentiable; D need 
not be simply-connected. (But 4 implies 1, 2, 3 only if D is simply-connected.) 

Example 1. Is F = xy i + x2j a gradient field? 

Solution. We have curl F = x # 0, so the theorem says it is not. 

ydx - xdy
Example 2. Is an exact differential? If so, find all possible functions f (x, y)

y2
for which it can be written df . 

Solution. M = l l y  and N = -zly2 are continuously differentiable wherever y # 0, 
i.e., in the two half-planes above and below the x-axis. These are both simply-connected. 
In each of them, 

My = -llY2= N, 

Thus in each half-plane the differential is exact, by the theorem, and we can calculate f (x, y) 
by the standard methods in Sction V2. They give 
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where c is an arbitrary constant. This constant need not be the same for the two regions, 
since they do not touch. Thus the most general function is 

XIY+ c, Y > 0 
~ ( x , Y )  = c,c' are arbitrary constants. 

Example 3. Let F = rn(xi +y j ), r = d R . For which integers n is F conserva-
tive? For each such, find a corresponding f (x, y) such that F = Vf . 

Solution. By the usual calculation, using the chain rule and the useful polar coordinate 
relations r, = x l r ,  ry = y/r,  we find that curl F = 0. There are two cases. 

Case 1: n > 0. Then F is continuously differentiable in the whole xy-plane, which is 
simply-connected. Thus by the preceding theorem, F is conservative, and we can calculate 
f (x, y) as in Section V2. 

We use method 1 (line integration). The radial symmetry suggests using the ray C from 
(0,O) to (XI,  yl) as the path of integration, with the parametrization 

x = xlt ,  y = ylt, 0 5 t 5 1; 

also, let 

r ~ = d G ;then rn=r ; tn ,  ~ d x + ~ d y = r ~ t d t  

and we get, by method 1for finding f (x, y), 

so that 
rn+2 

(7) f ( z ,y )  = n+2, F = Vf, n 2 O .  

Case 2: n < 0. The field F is not defined at (0, O), so that its domain, the xy-plane 
with (0,O) removed, is not simply-connected. So even though curl F = 0 in this region, (3) 
is not immediately applicable. 

Nonetheless, if n # -2, one can check by differentiation that (7) is still valid. 

If n = -2, guessing, inspection, or method 2 give f (x, y) = lnr .  

We conclude that the field in all cases is a gradient field. Note in particular that the two 
force fields given in section V1, representing respectively (apart from a constant factor) the 
fields arising from a positive charge at  (0,O) and a uniform positive charge along the z-axis, 
correspond to the respective cases n = -3 and n = -2, and are both gradient fields: 

(n = -3 : positive charge at  (0,O)) 

= v( lnr )  (n = -2 : uniform + charge on z-axis). 
r2 

Exercises: Section 4G 




