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V13. Stokes' Theorem 

1. Introduction; statement of the theorem. 

The normal form of Green's theorem generalizes in 3-space to the divergence theorem. 
What is the generalization to space of the tangential form of Green's theorem? It says 

where C is a simple closed curve enclosing the plane region R. 

Since the left side represents work done going around a closed curve in the plane, its 
natural generalization to space would be the integral $ F dr representing work done going 
around a closed curve in 3-space. 

In trying to generalize the right-hand side of (I), the space curve C can only be the 
boundary of some piece of surface S -which of course will no longer be a piece of a plane. 
So it is natural to look for a generalization of the form 

gjc F .dr = /L(something derived from F)dS  

The surface integral on the right should have these properties: 

a) If curl F = 0 in Bspace, then the surface integral should be 0; (for F is then 
a gradient field, by V12, (4), so the line integral is 0, by V l l ,  (12)). 

b) If C is in the xy-plane with S as its interior, and the field F does not depend 

on z and has only a k-component, the right-hand side should be 

These 
JLcurl F dS  . 

things suggest that the theorem we are looking for in space is 

Stokes' theorem 

For the hypotheses, first of all C should be a closed curve, since it is the boundary of S ,  
and it should be oriented, since we have to calculate a line integral over it. 

S is an oriented surface, since we have to calculate the flux of curl F through it. This 
means that S is two-sided, and one of the sides designated as positive; then the unit normal 
n is the one whose base is on the positive side. (There is no "standard" choice for positive 
side, since the surface S is not closed.) 

cubical surface: 
no boundary 

It is important that C and Sbe compatibly oriented. By this we mean that the right-hand 
rule applies: when you walk in the positive direction on C ,  keeping S to your left, then your 
head should point in the direction of n. The pictures give some examples. 
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The field F = M i  + N j + Pk should have continuous first partial derivatives, so that 
we will be able to integrate curl F. For the same reason, the piece of surface S should be 
piecewise smooth and should be finite- i.e., not go off to infinity in any direction, and have 
finite area. 

2. Examples and discussion. 
i \ 

Example 1. Verify the equality in Stokes' theorem when S is the half : A

of the sphere centered at  the origin on which y 2 0, oriented so n makes 
take F = + j + 

........ 

an acute angle with the positive y-axis; y i 22 x k . 

cu

:
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,: 
................. 


, 
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i I 

Solution. The picture illustrates C and S .  Notice how C must be j / 

directed to make its orientation compatible with that of S. 

We turn to the line integral first. C is a circle in the xz-plane, traced out clockwise in 
the plane. We select a parametrization and calculate: 

t
h y d x + 2 x d y + z d z  = -c0s2tdt = [-2-4]s in  2t 2lT 

= - I T .  
0 


For the surface S ,  we see by inspection that n = x i  + yj + z k ; this is a unit vector since 
x2 + y2 + z2 = 1on S .  We calculate 

i j k 
curl F = ax ay a, = - j  + k ;  ( c u r l F ) . n = - y + z  

y 2x x 

Integrating in spherical coordinates, we have y = sin 4 sin 0, z = cos 4, d S  = sin 4 d4 dB, since 
p = 1on S;therefore 

/LCUrl  F . ~ S= f l ( - y + z ) d ~s 

= l ' l l T ( - s i n m s i n ~ + c o s ~ ) s i n ~ d ~ d ~ ;  

integral sin ,)($ sin24 1 IT
inner = 0 - + 5 sin2,]: = sin,

IT
outer integral = -- cos 9 = -IT , which checks. n 2 

Example 2. Suppose F = x2 i + 

h 
x j + z2 k and Sis given as the graph 

of some function z = g(x, y), oriented so n points upwards. 

Show that F . dr  = area of R, where C is the boundary of S ,  com- 

patibly oriented, and R is the projection of S onto the xy-plane. 

i j k 
Solution. We have curl F = ax a, a, = k .  By Stokes' theorem, (cf. V9, (12)) 

x2 x z 
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since n . k > 0, In . k 1 = n . k ; therefore 

h F . dr = SR dA = area of R . 

The relation of Stokes' theorem to Green's theorem. 

Suppose F is a vector field in space, having the form F = M(x, y) i + N(x, y) j , and C 
a simple closed curve in the xy-plane, oriented positively (so the interior is on your left 
you walk upright in the positive direction). Let S be its interior, compatibly oriented -

this means that the unit normal n to S is the vector k ,  and d S  = dA. 

Then we get by the usual determinant method curl F = (N, - My) k ; since n = k ,  
Stokes theorem becomes 

which is Green's theorem in the plane. 

The same is true for other choices of the two variables; the most interesting one is 
F = M(x, z) i + P(x ,  z) k , where C is a simple closed curve in the xz-plane. If careful 
attention is paid to the choice of normal vector and the orientations, once again Stokes' 
theorem becomes just Green's theorem for the xz-plane. (See the Exercises.) 

Interpretation of curl F. 

Suppose now that F represents the velocity vector field for a three-dimensional fluid flow. 
Drawing on the interpretation we gave for the two-dimensional curl in Section V4, we can 
give the analog for 3-space. 

The essential step is to interpret the u-component of (curl F)O at  a point Po, , where u 
is a given unit vector, placed so its tail is at  Po. 

Put a little paddlewheel of radius a in the flow so that its center is at  Poand its axis 
points in the direction u .  Then by applying Stokes' theorem to a little circle C of radius 
a and center at  P o ,  lying in the plane through Poand having normal direction u,  we get 
just as in Section V4 (p. 4) that 

yu
... 

1
angular velocity of the paddlewheel = -

by Stokes' theorem, S being the circular disc having C as boundary; 

1 
-27ra2 (curl F)o  . u (7ra2), 

since curl F . u is approximately constant on S if a is small, and S has area 7ra2; passing to 
the limit as a 4 0, the approximation becomes an equality: 

1
angular velocity of the paddlewheel = - (curl F) . u .

2 
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The preceding interprets (curl F)o  .u for us. Since it has its maximum value when u has 
the direction of (curl F)o, we conclude 

direction of (curl F)o = axial direction in which wheel spins fastest 

magnitude of (curl F)o = twice this maximum angular velocity. 

3. Proof of Stokes' Theorem. 

We will prove Stokes' theorem for a vector field of the form P(x ,  y, z) k . That is, we will 
show, with the usual notations, 

We assume S is given as the graph of z = f (x, y) over a region R of the xy-plane; we let C 
be the boundary of S ,  and C' the boundary of R.  We take n on S to be pointing generally 
upwards, so that In.k 1 = n . k . 

To prove (3), we turn the left side into a line integral around C', and the right side into 
a double integral over R,  both in the xy-plane. Then we show that these two integrals are 
equal by Green's theorem. 

To calculate the line integrals around C and C', we parametrize these curves. Let 

be a parametrization of the curve C' in the xy-plane; then 

gives a corresponding parametrization of the space curve C lying over it, since C lies on the 
surface z = f (x, y). 

Attacking the line integral first, we claim that 

This looks reasonable purely formally, since we get the right side by substituting into the left 
side the expressions for z and dz in terms of x and y: z = f (x, y), dz = fxdx + f,dy. To 
justify it more carefully, we use the parametrizations given above for C and C' to calculate 
the line integrals. 

= i,
P(x ,  y, f (x, y))(f.dx + fydy), the right side of (4). 

We now calculate the surface integral on the right side of (3), using x and y as the variables. 
In the calculation, we must distinguish carefully between such expressions as PI(x, y, f )  and 
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&P(x, y, f )  . The first of these means: calculate the partial derivative with respect to the 
first variable x, treating x, y, z as independent; then substitute f (x, y) for z. The second 
means: calculate the partial with respect to x, after making the substitution z = f (x, y); 
the answer is a 

-P(x ,y , f )  = P1(x,y,f)  + P 3 ( ~ , ~ , f ) f i  . a x  
(We use PI rather than Pxsince the latter would be ambiguous -when you use numerical 
subscripts, everyone understands that the variables are being treated as independent.) 

With this out of the way, the calculation of the surface integral is routine, using the 
standard procedure of an integral over a surface having the form z = f (x, y) given in 
Section V9. We get 

dS = (-fxi  - f y j  + k)dxdy ,  by V9, (13); 

i j k 
~ u r l ( P ( x , ~ , z ) k )  = a x  dy dZ = P z ( x , y , z ) i - P l ( x , y , z ) j  

O O P 

We have now turned the line integral into an integral around C' and the surface integral 
into a double integral over R. As the final step, we show that the right sides of (4) and (5) 
are equal by using Green's theorem 

Namely, we have 

Therefore, since fxy  = fyx,  four terms cancel, and we end up with 

which is precisely the integrand on the right side of (5). This completes the proof of Stokes' 
theorem when F = P(x ,  y, z) k . 

In the same way, if F = M(x, y, z) i and the surface is x = g(y, z) ,  we can reduce Stokes' 
theorem to Green's theorem in the yz-plane. 

If F = N(x, y, z) j and y = h(x, z) is the surface, we can reduce Stokes' theorem to 
Green's theorem in the xz-plane. 

Since a general field F = M i  +N j  +Pk can be viewed as a sum of three fields, each of 
a special type for which Stokes' theorem is proved, we can add up the three Stokes' theorem 
equations of the form (3) to get Stokes' theorem for a general vector field. 

A difficulty arises if the surface cannot be projected in a 1-1 way onto each of three 
coordinate planes in turn, so as to express it in the three forms needed above: 
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In this case, it can usually be divided up into smaller pieces which can be so expressed (if 
some of these are parallel to one of the coordinate planes, small modifications must be made 
in the argument). Stokes' theorem can then be applied to each piece of surface, then the 
separate equalities can be added up to get Stokes' theorem for the whole surface (in the 
addition, line integrals over the cut-lines cancel out, since they occur twice for each cut, in 
opposite directions). This completes the argument, manus undulans, for Stokes' theorem. 

Exercises: Section 6F 




