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6. Vector Integral Calculus in Space 

6A. Vector Fields in Space 

6A-1 a) the vectors are all unit vectors, pointing radially outward. 
b) the vector at P has its head on the y-axis, and is perpendicular to it 

6A-4 A vector field F = M i  + N j + Pk is parallel to the plane 32 - 4y + z = 2 if it is 
perpendicular to the normal vector to the plane, 3 i - 4 j  + k : the condition on M, N, P 
therefore is 3M - 4N + P = 0, or P = 4N - 3M. 

The most general such field is therefore F = M i  +N j + (4N - 3M) k , where M and N 
are functions of x, y, z. 

6B. Surface Integrals and Flux 

x i  + y j  + z k  
6B-1 We have n = ; therefore F .n = a. 

a 

I 
P P 

Flux through S = F .n dS = a(area of S )  = 47r a3 
Is 

6B-2 Since k is parallel to the surface, the field is everywhere tangent to the cylinder, 
hence the flux is 0. 

ll, 

i + j + k  16B-3 is a normal vector to the plane, so F .n = -.
l.6 l.6 

area of region - 4 (base) (height) - ( 4 )  ( 4 )  - -1Therefore, flux = - - -
l.6 l.6 l.6 2'  

x i  + y j  + z k  y26B-4 

/k 
n = 

l" l" 
; F .n = -. Calculating in spherical coordinates, 

a a 

flux = L 
2 

dS = a4 sin3 4 sin2 0 dm do = a3ln 6" sin34 sin2 0 dmde. 
a 

Inner integral: sin2 O(- cos 4 + $ cos3 4) 

$ 
1 

1: = $ sin2 8; 

" 
Outer integral: %a3($8 - sin 28) J, = 2i7ra3.
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F . n - zi + j + k .  6B-5 n =  a ' a. 
z dxdy 1 dx dy 1-Y 

Innerintegral: = x - ~ x  1 2 -xy ]I-. = $ ( 1 - ~ ) ~ .  
0 


1 1  
Outerintegral: = 

2 3 

6B-6 z = f (x, y) = x2 + y2 (a paraboloid). By (13) in Notes V9, 

dS = (-2xi - 2yj  + k )  dxdy. 

(This points generally "up", since the k component is positive:) Since F = x i + yj + z k , 

where R is the interior of the unit circle in the xy-plane, i.e., the projection of S onto the 
xy-plane). Since z = x2 + y2, the above integral 

The answer is negative since the positive direction for flux is that of n ,  which here points 
into the inside of the paraboloidal cup, whereas the flow x i  + yj + z k is generally from 
the inside toward the outside of the cup, i.e., in the opposite direction. 

x i + y j  F . n = - .y26B-8 On the cylindrical surface, n = 
a a 

In cylindrical 

lri2
coordinates, 

Jdk
since y = a sin 8, this gives us F . dS = F . n dS  = a2sin28 dz dB. 

Flux = a2sin28 dz dB = a2h s in28d8=a2h( - --~ i ; 2 8 ) ~ / ~= - a 2 h .s 
-r/2 -r/2 2 

6B-12 Since the distance from a point (x, y, 0) up to the hemispherical surface is z,  

JJs dSaverage distance = -
JJs dS  ' 

In spherical coordinates, / L z d S  = Jd2rJdri2acos)
 .a2sin)d)d8.

Inner: = a3Jd r/2 :/2
 :.
 Jd2 r  
sin)cos)d)=a3(-

s~F]
-- - Outer: = d8 = sa3 .

s a 3  a 
Finally, dS  = area of hemisphere = 2sa2, so average distance = --- -

2sa2 2 '  
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6C. Divergence Theorem 

6C-2 Using the product and chain rules for the first, symmetry for the others, 

x2 + y2 + z 2  
adding these three, we get div F = npn-l + 3pn = pn(n+3) .

P 
Therefore, div F = 0 # n = -3. 

6C-3 Evaluating the 

/k
triple integral first, we have div F = 3, therefore 

2
div F dV = 3(vol.of D)  = 3 -7ra3 = 27ra3.

3 

To evaluate the double integral over the closed surface S = S1+S2,the respective normal 
vectors are: 

x i  + y j  + z k  
n l  = (hemisphere S1), n2 = -k (disc 5'2); 

a 
using these, the surface integral for the flux through S is 

since x2 +y2 +z2 = P2 = a2 on S1, and z = 0 on S2. SO the value of the surface integral is 

a(area of S1)= a(27ra2) = 27ra3, 

which agrees with the triple integral above. 

6C-5 The divergence theorem says / k ~ . d s = M d i v ~ d v .  

Here div F = 1, so that the right-hand integral is just the volume of the 
tetrahedron, which is i(base) (height) = i (i) (1) = i. 

6C-6 The divergence theorem says / k ~ . d ~ = / k d i v ~ d ~ .  

P-

Here div F = 1, so the right-hand integral is the volume of the solid cone, which has 

height 1and base radius 1; its volume is i(base) (height)= 7r/3. 

6C-7a Evaluating the triple integral first, over the 

/k
cylindrical solid D ,  we have 

div F = 2x + x = 3s; 3 x d v  = 0,

since the solid is symmetric with respect to the yz-plane. (Physically, assuming the density 
is 1, the integral has the value 3(mass of D) ,  where 3 is the x-coordinate of the center of 
mass; this must be in the yz plane since the solid is symmetric with respect to this plane.) 

To evaluate the double integral, note that F has no k-component, so there is no flux 
across the two disc-like ends of the solid. To find the flux across the cylindrical side, 
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since the cylinder has radius 1and equation x2 + y2 = 1. Thus 

6C-8 a) Reorient the lower hemisphere S 2  by reversing its normal vector; call the reori- 
ented surface Sb. Then S = S1+ Sb is a closed surface, with the normal vector pointing 
outward everywhere, so by the divergence theorem, 

since by hypothesis div F = 0. The above shows b----4 
/ J , ; . d s = - / ~ , : ~ . d s = / J s , ~ . d s ,  

since reversing the orientation of a surface changes the sign of the flux through it. 

b) The same statement holds if S1 and S2are two oriented surfaces having the same 
boundary curve, but not intersecting anywhere else, and oriented so that Sl and Sb (i.e., S 2  

with its orientation reversed) together make up a closed surface S with outward-pointing 
normal. 

6C-10 If div F = 0, then for any closed surface S, we have by the divergence theorem 

Conversely: /lF . dS = 0 for every closed surface S 3 div F = 0. 

For suppose there were a point Po at which (div F)O # 0 - say (div F)o  > 0. Then 
by continuity, div F > 0 in a very small spherical ball D surrounding Po, so that by the 
divergence theorem ( S  is the surface of the ball D) ,  

/ l F . d ~ = / / L d i v F d v  > 0. 

But this contradicts our hypothesis that F .dS = 0 for every closed surface S .  

6C-11 flux of F = /lF .dn  = //Ldiv F d V  = / /L3dV = 3(vol. of D). 

6D. Line Integrals in Space 

6D-1 a) C : x = t, dx = dt; y = t2, dy = 2tdt; z = t3, dz = 3t2 dt; 

y dx + z dy - x dz = h' (t2)dt+ t3(2t dt) - t(3t2 dt) 

1 
= 11( t2+2t4-3 t3)d t  = 
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d) C : x = c o s t ,  y =s in t ,  z = t ;  z x d x + z y d y + x d z
Jc 

t cos t(- sin t dt) + t sin t(cos t dt) + cos t dt = costdt = 0. 

6D-2 The field F is always pointed radially outward; if C lies on a sphere centered at  
the origin, its unit tangent t is always tangent to the sphere, therefore perpendicular to the 
radius; this means F - t = 0 at  every point of C. Thus Sc F .dr = Jc F t ds = 0. 

Sc
b) (i) Directly, letting C be the helix: x = cost, y = sint,  z = t, from t = 0 to t = 2na, 

M ~ X+~d~ + ~ d z= 1'""2 cos t(- sin t)dt + 2 sin t(cos t)dt + 2t dt = 2t dt = (2na)'. 

b) (ii) Choose the vertical path x = 1, y = 0, z = t; then 

J,M ~ X+~d~ +pdz  = 1'"" 2t dt = (2na) 2.  

b) (iii) By the First Fundamental Theorem for line integrals, 

6D-5 By the First Fundamental Theorem for line integrals, 

where C is any path joining P to Q. The maximum value of this difference is 1- (-1) = 2, 
since sin(xyz) ranges between -1 and 1. 

For example, any path C connecting P : (1,1, -a/2) to Q : (1,1,a/2)  will give this 
maximum value of 2 for Jc F dr. 

6E. Gradient Fields in Space 

6E-1 a) Since M = x2, N = y2, P = z2 are continuously differentiable, the differential is 
exact because N, = Py= 0, M, = P, = 0, My = N, = 0. 

b) Exact: M, N,  P are continuously differentiable for all x, y, z, and 

N, = Py= 2xy, M, = P, = y2,  My = N, = 2yz. 

c) Exact: M, N,  P are continuously differentiable for all x, y, z, and 

i j k 
6E-2 curl F = d, dy d, = (xz2 - y) i - yz2j - 2 2  k .  

x2y yz xyz2 
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6E-3 a) It is easily checked that curl F = 0. 

b) (i) using method I: 

= lxl x dx + iylydy + 1'' zdz = -xl 1 2  + 1 2  
-YI + -z2.1 2  

2 2 2 X 

Therefore f (x, y, z) = $(x2 + y2 + z2) + C. c2

(ii) Using method 11: We seek f (x, y, z) such that f, = 2xy + z, f y  = x2, f, = x. 

Therefore f (x, y, z) = x2y + xz + c. 

(iii) If f, = yz, f y  = xz, f, = xy, then by inspection, f (x, y, z) = xyz + c. 

6E-4 Let F = f - g. Since V is a linear operator, V F  = Vf - Vg = 0 

We now show: V F  = 0 + F = c. 

Fix a point Po: (xo, yo, 20). Then by the Fundamental Theorem for line integrals, 

Therefore F ( P )  = F(Po) for all P, i.e., F(x,  y, z) = F(xo,YO,  zO)= C. 

6E-5 F is a gradient field only if these equations are satisfied: 

N , = P y :  2xz+ay=bxz+2y  M , = P , :  2yz=byz M y = N x :  z 2 = z 2 .  

Thus the conditions are: a = 2, b = 2. 

Using these values of a and b we employ Method 2 to find the potential function f :  

therefore, f (x, y, z) = xyz2 +y2z +c. 

6E-6 a) Mdx +Ndy +Pdz is an exact differential if there exists some function f (x, y, z) 
for which df = Mdx + Ndy +Pdz; that, is, for which f, = M, f y  = N, f, = P .  

b) The given differential is exact if the following equations are satisfied: 

N, = Py: (a/2)x2 +6xy2z+3byz2= 3x2 +3cxy2z + 12yz2; 
M, = P, : axy + 2y3z = 6xy +cy3z 
My = N, : axz + 3y2z2= axz +3y2z2. 

Solving these, we find that the differential is exact if a = 6, b = 4, c = 2. 
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c) We find f (x, y, z) using method 2: 

f, = 6xyz + y3z2 + f = 3x2yz+ xy3z2+ g(y,z); 
f, = 3 ~ 2 ~  + 3xy2z2+gy = 3 ~ 2 ~+3xy2z2+dyz3 + gy = 4yz3 = 2y2z3+ h ( ~ )  
f,= 3xZy+ 2xy3z + 6y2z2+ hl(z) = 3xZy+ 2xy3z + 6y2z2 + hl(z) = 0 + h = C. 

Therefore, f (x, y,z) = 3xZyz+ xy3z2+ 2y2z3+ C. 

6F. Stokes' Theorem A 
6F-1 a) For the line integral, 46, F . dr = xdx + ydy + zdz = 0,

since the differential is exact. 
46, C 

i j k 
For the surface integral, V x F = ax 8, 8, = 0 ,  and therefore /J ,vxF.~s = 0. 

X Y Z 

b) Line integral: 46,ydx + zdy + xdz = ydx, since z = 0 and dz = 0 on C. 

Using x =cost ,  y = sint, I""- sin2 t dt = -12":ps2tdt = -n-. 
-

i j k 
Surface integral: curl F = 8, 8, 8, = - i - j - k ; n = x i  + yj + z k 

Y Z X 

/ k ~ x F ) . n d ~ = -

To evaluate, we use x = r cos 0, y = r sin 6, z = p cos q5. r = p sin q5, dS  = p2 sin q5 d4d0; 
note that p = 1on S .  The integral then becomes 

l o  l o  [sin q5(cos 0 + sin 0) + cos $1 sin q5 dq5 dB 
-

Inner: -[(cos 0 + sin 6)(+ - $ cos 2q5) + $ sin2q5]:i2= - [ ( c o s ~ + s i n ~ i + iI ;

Outer: J ( - A - cos 0 - sin 0) dB = -IT.
2 

6F-2 The surface S is: z = -x - y, so that f (x, y) = -x - y. 

(Note the signs: n points upwards, and therefore should have a positive k-component.) 

i j k 
curl F = ax dy 8, = - i - j - k 

Therefore /L 
Y Z X 

curl F . n d S  = - 3dA = -3a, where S' is the projection of S, i.e., 

the interior of the unit circle in the xy-plane. 

As for the line integral, we have C : x = cost, y = sin t z = - cost - sin t ,  so that 
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h y d X f z d y  +xdz = - sin2 t - (cos2 t + sin t cos t) +cos t(sin t - cos t)] dt 

= ~ 2 " ( - s i n 2 t - c o s 2 t - c o s 2 t ) d t =  2 

6F-3 Line integral: yz dx +xz dy +xy dz over the path C = Cl + . . . +C4: 
!c 

= 0, since z = dz = 0 on Cl; 

J c ? = l l l . l d z = l ,  s i n c e x = l ,  y = l , d x = O ,  dy=OonC2;  

ydx+xdy= I0xdx+xdx=-1,  s i n c e y = x , z = 1 , d z = O o n C 3 ;  

k = 0, since x = 0, y = 0 on C4. 

Adding up, we get F .dr = Ll+ + + = 0. For the surface integral, 

i j k 
curl F = d, dy d, = i (x - x) - j (y - y) + k (z - z) = 0;  thus 

yz xz xy 

6F-5 Let S1be the top of the cylinder (oriented so n = k ), and S2the side. 

i j k 
a) We have curl F = d, dy dZ = -2x j +2 k . 

-y X x2 h 

For the top: /11 curl F .n dS = /k,
2 dS = 2(area of Sl )  = 2sa2 . C 

/L
x i  + y j  

For the side: we have n = , and 

1'"
dS = dz .a dB, so that 

a 

curl F .n d ~= 1 2 " l h + a d z d B =  -2h(acosB)(asinB)dB=-ha2sin2e 1:" = 0 .  

Adding, /lcurl F .dS = /11 +/12= 2sa2. 

b) Let C be the circular boundary of S, parameterized by x = a cos 8, y = a sine, z = 0. 
Then 

/l
using Stokes' theorem, 

curl F .dS = -y dx +x dy +x2 dz = 12" (a2 sin2 B + a2 cos2 0) dB = 2sa2.

6G. Topological Questions 

6G-1 a) yes b) no c) yes d) no; yes; no; yes; no 

6G-2 Recall that p, = xlp, etc. Then, using the chain rule, 

Y z curl F = (npn-'z - -npn-l y --) i + x z x Y(npn-'z - -npn-lx -) j + (npn-ly - -npn-'x -) k .  
P P P P P 
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Therefore curl F = 0. To find the potential function, we let Po be any convenient 
starting point, and integrate along some path to Pl : (xl,  yl, zl). Then, if n # -2, we have 

pn(x dx + y dy + z dz) = 
dr = Lo]PoPl 
= pn+ldP= - + c, since Pois fixed. 

n + 2  n + 2  n + 2  

pn+2 
Therefore, we get F = V-

n + if n # -2. 
2 '  

If n = -2, the line integral becomes = lnpl + c, so that F = V(1np). 

6H. Applications and Further Exercises 

6H-1 Let F = M i  + N j + Pk .  By the definition of curl F, we have 

If all the mixed partials exist and are continuous, then Pxy= Pyx,  etc. and the right-hand 
side of the above equation is zero: div (curl F )  = 0. 

6H-2 a) Using the 

Jl
divergence theorem, and the previous problem, (D is the interior of S) ,  

curl F . dS = //L div curl F dV = JLO ~ V= 0. 

b) Draw a closed curve C on S that divides it into two pieces S1 and S 2  both having C 
as boundary. Orient C compatibly with S1,then the curve C' obtained by reversing the 
orientation of C will be oriented compatibly with S2. Using Stokes' theorem, 

JJ,curl F . = JJ,,curl ~ . d S + / J s ? ~ ~ ~ l  F . ~ S= h F ' . d r  +h,F . d r  = 0, 

since the integral on C' is the negative of the integral on C. 

Or more simply, consider the limiting case where C has been shrunk to a point; even as 
a point, it can still be considered to be the boundary of S .  Since it has zero length, the line 
integral around it is zero, and therefore Stokes' theorem gives 

JJ,curl F . dS = iF . dr = 0. 

6H-10 Let C be an oriented closed curve, and S a compatibly-oriented surface having C as 
its boundary. Using Stokes' theorem and the Maxwell equation, we get respectively 

1aE
J J , v x ~ . d s =  B.dr and J J , v X B . ~ S = J J , - - . ~ S = ~ ~ J J , E . ~ S .a t  c dt 

1 d
Since the two left sides are the same, we get h B dr = ;ilJL E . dS.

In words: for the magnetic field B produced by a moving electric field E(t), the magneto- 
motive force around a closed loop C is, up to a constant factor depending on the units, the 
time-rate at  which the electric flux through C is changing. 




