MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6. Vector Integral Calculus in Space

6A. Vector Fields in Space

6A-1 a) the vectors are all unit vectors, pointing radially outward.
b) the vector at P has its head on the y-axis, and is perpendicular to it

6A-2 $\frac{1}{2}(-x \mathbf{i}-y \mathbf{j}-z \mathbf{k})$
$6 \mathbf{A - 3} \omega(-z \mathbf{j}+y \mathbf{k})$
6A-4 A vector field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is parallel to the plane $3 x-4 y+z=2$ if it is perpendicular to the normal vector to the plane, $3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$: the condition on M, N, P therefore is $3 M-4 N+P=0$, or $P=4 N-3 M$.

The most general such field is therefore $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+(4 N-3 M) \mathbf{k}$, where M and N are functions of x, y, z.

6B. Surface Integrals and Flux

6B-1 We have $\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{a}$; therefore $\mathbf{F} \cdot \mathbf{n}=a$.
Flux through $S=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=a($ area of $S)=4 \pi a^{3}$.
6B-2 Since \mathbf{k} is parallel to the surface, the field is everywhere tangent to the cylinder, hence the flux is 0 .

6B-3 $\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}$ is a normal vector to the plane, so $\mathbf{F} \cdot \mathbf{n}=\frac{1}{\sqrt{3}}$.
Therefore, flux $=\frac{\text { area of region }}{\sqrt{3}}=\frac{\frac{1}{2} \text { (base)(height) }}{\sqrt{3}}=\frac{\frac{1}{2}(\sqrt{2})\left(\frac{\sqrt{3}}{2} \sqrt{2}\right)}{\sqrt{3}}=\frac{1}{2}$.

6B-4 $\quad \mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{a} ; \quad \mathbf{F} \cdot \mathbf{n}=\frac{y^{2}}{a}$. Calculating in spherical coordinates, flux $=\iint_{S} \frac{y^{2}}{a} d S=\frac{1}{a} \int_{0}^{\pi} \int_{0}^{\pi} a^{4} \sin ^{3} \phi \sin ^{2} \theta d \phi d \theta=a^{3} \int_{0}^{\pi} \int_{0}^{\pi} \sin ^{3} \phi \sin ^{2} \theta d \phi d \theta$.

Inner integral: $\left.\sin ^{2} \theta\left(-\cos \phi+\frac{1}{3} \cos ^{3} \phi\right)\right]_{0}^{\pi}=\frac{4}{3} \sin ^{2} \theta$;
Outer integral: $\left.\frac{4}{3} a^{3}\left(\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right)\right]_{0}^{\pi}=\frac{2}{3} \pi a^{3}$.
$6 B-5 \quad \mathbf{n}=\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}} ; \quad \mathbf{F} \cdot \mathbf{n}=\frac{z}{\sqrt{3}}$.
flux $=\iint_{S} \frac{z}{\sqrt{3}} \frac{d x d y}{|\mathbf{n} \cdot \mathbf{k}|}=\frac{1}{\sqrt{3}} \iint_{S}(1-x-y) \frac{d x d y}{1 / \sqrt{3}}=\int_{0}^{1} \int_{0}^{1-y}(1-x-y) d x d y$.
Inner integral: $\left.=x-\frac{1}{2} x^{2}-x y\right]_{0}^{1-y}=\frac{1}{2}(1-y)^{2}$.
Outer integral: $\left.=\int_{0}^{1} \frac{1}{2}(1-y)^{2} d y=\frac{1}{2} \cdot-\frac{1}{3} \cdot(1-y)^{3}\right]_{0}^{1}=\frac{1}{6}$.

6B-6 $z=f(x, y)=x^{2}+y^{2}$ (a paraboloid). By (13) in Notes V9,

$$
d \mathbf{S}=(-2 x \mathbf{i}-2 y \mathbf{j}+\mathbf{k}) d x d y
$$

(This points generally "up", since the \mathbf{k} component is positive.) Since $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{R}\left(-2 x^{2}-2 y^{2}+z\right) d x d y
$$

where R is the interior of the unit circle in the $x y$-plane, i.e., the projection of S onto the $x y$-plane). Since $z=x^{2}+y^{2}$, the above integral

$$
=-\iint_{R}\left(x^{2}+y^{2}\right) d x d y=-\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cdot r d r d \theta=-2 \pi \cdot \frac{1}{4}=-\frac{\pi}{2}
$$

The answer is negative since the positive direction for flux is that of \mathbf{n}, which here points into the inside of the paraboloidal cup, whereas the flow $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is generally from the inside toward the outside of the cup, i.e., in the opposite direction.

6B-8 On the cylindrical surface, $\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}}{a}, \quad \mathbf{F} \cdot \mathbf{n}=\frac{y^{2}}{a}$.
In cylindrical coordinates, since $y=a \sin \theta$, this gives us $\mathbf{F} \cdot d \mathbf{S}=\mathbf{F} \cdot \mathbf{n} d S=a^{2} \sin ^{2} \theta d z d \theta$.
Flux $=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{k} a^{2} \sin ^{2} \theta d z d \theta=a^{2} h \int_{-\pi / 2}^{\pi / 2} \sin ^{2} \theta d \theta=a^{2} h\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right)_{-\pi / 2}^{\pi / 2}=\frac{\pi}{2} a^{2} h$.

6B-12 Since the distance from a point $(x, y, 0)$ up to the hemispherical surface is z,

$$
\text { average distance }=\frac{\iint_{S} z d S}{\iint_{S} d S}
$$

In spherical coordinates, $\iint_{S} z d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} a \cos \phi \cdot a^{2} \sin \phi d \phi d \theta$.

$$
\text { Inner: }=a^{3} \int_{0}^{\pi / 2} \sin \phi \cos \phi d \phi=a^{3}\left(\frac{\sin ^{2} \phi}{2}\right]_{0}^{\pi / 2}=\frac{a^{3}}{2} . \quad \text { Outer: }=\frac{a^{3}}{2} \int_{0}^{2 \pi} d \theta=\pi a^{3}
$$

Finally, $\iint_{S} d S=$ area of hemisphere $=2 \pi a^{2}$, so average distance $=\frac{\pi a^{3}}{2 \pi a^{2}}=\frac{a}{2}$.

6C. Divergence Theorem

6C-1a $\quad \operatorname{div} \mathbf{F}=M_{x}+N_{y}+P_{z}=2 x y+x+x=2 x(y+1)$.
6C-2 Using the product and chain rules for the first, symmetry for the others,

$$
\left(\rho^{n} x\right)_{x}=n \rho^{n-1} \frac{x}{\rho} x+\rho^{n}, \quad\left(\rho^{n} y\right)_{y}=n \rho^{n-1} \frac{y}{\rho} y+\rho^{n}, \quad\left(\rho^{n} z\right)_{z}=n \rho^{n-1} \frac{z}{\rho} z+\rho^{n}
$$

adding these three, we get $\operatorname{div} \mathbf{F}=n \rho^{n-1} \frac{x^{2}+y^{2}+z^{2}}{\rho}+3 \rho^{n}=\rho^{n}(n+3)$.
Therefore, $\operatorname{div} \mathbf{F}=0 \Leftrightarrow n=-3$.
6C-3 Evaluating the triple integral first, we have $\operatorname{div} \mathbf{F}=3$, therefore

$$
\iiint_{D} \operatorname{div} \mathbf{F} d V=3(\text { vol.of } D)=3 \frac{2}{3} \pi a^{3}=2 \pi a^{3}
$$

To evaluate the double integral over the closed surface $S=S_{1}+S_{2}$, the respective normal vectors are:

$$
\left.\mathbf{n}_{1}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{a} \quad \text { (hemisphere } S_{1}\right), \quad \mathbf{n}_{2}=-\mathbf{k} \quad\left(\operatorname{disc} S_{2}\right) ;
$$

using these, the surface integral for the flux through S is

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \frac{x^{2}+y^{2}+z^{2}}{a} d S+\iint_{S_{2}}-z d S=\iint_{S_{1}} a d S
$$

since $x^{2}+y^{2}+z^{2}=p^{2}=a^{2}$ on S_{1}, and $z=0$ on S_{2}. So the value of the surface integral is

$$
a\left(\text { area of } S_{1}\right)=a\left(2 \pi a^{2}\right)=2 \pi a^{3},
$$

which agrees with the triple integral above.
6C-5 The divergence theorem says $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \operatorname{div} \mathbf{F} d V$.
Here $\operatorname{div} \mathbf{F}=1$, so that the right-hand integral is just the volume of the tetrahedron, which is $\frac{1}{3}$ (base)(height) $=\frac{1}{3}\left(\frac{1}{2}\right)(1)=\frac{1}{6}$.

6C-6 The divergence theorem says $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \operatorname{div} \mathbf{F} d V$.
Here $\operatorname{div} \mathbf{F}=1$, so the right-hand integral is the volume of the solid cone, which has height 1 and base radius 1 ; its volume is $\frac{1}{3}$ (base)(height) $=\pi / 3$.

6C-7a Evaluating the triple integral first, over the cylindrical solid D, we have

$$
\operatorname{div} \mathbf{F}=2 x+x=3 x ; \quad \iiint_{D} 3 x d V=0
$$

since the solid is symmetric with respect to the $y z$-plane. (Physically, assuming the density is 1 , the integral has the value \bar{x} (mass of D), where \bar{x} is the x-coordinate of the center of mass; this must be in the $y z$ plane since the solid is symmetric with respect to this plane.)

To evaluate the double integral, note that \mathbf{F} has no \mathbf{k}-component, so there is no flux across the two disc-like ends of the solid. To find the flux across the cylindrical side,

$$
\mathbf{n}=x \mathbf{i}+y \mathbf{j}, \quad \mathbf{F} \cdot \mathbf{n}=x^{3}+x y^{2}=x^{3}+x\left(1-x^{2}\right)=x
$$

since the cylinder has radius 1 and equation $x^{2}+y^{2}=1$. Thus

$$
\iint_{S} x d S=\int_{0}^{2 \pi} \int_{0}^{1} \cos \theta d z d \theta=\int_{0}^{2 \pi} \cos \theta d \theta=0
$$

6C-8 a) Reorient the lower hemisphere S_{2} by reversing its normal vector; call the reoriented surface S_{2}^{\prime}. Then $S=S_{1}+S_{2}^{\prime}$ is a closed surface, with the normal vector pointing outward everywhere, so by the divergence theorem,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{2}^{\prime}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \operatorname{div} \mathbf{F} d V=0
$$

since by hypothesis div $\mathbf{F}=0$. The above shows

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=-\iint_{S_{2}^{\prime}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}
$$

since reversing the orientation of a surface changes the sign of the flux through it.
b) The same statement holds if S_{1} and S_{2} are two oriented surfaces having the same boundary curve, but not intersecting anywhere else, and oriented so that S_{1} and S_{2}^{\prime} (i.e., S_{2} with its orientation reversed) together make up a closed surface S with outward-pointing normal.

6C-10 If div $\mathbf{F}=0$, then for any closed surface S, we have by the divergence theorem

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \operatorname{div} \mathbf{F} d V=0
$$

Conversely: $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0$ for every closed surface $S \Rightarrow \operatorname{div} \mathbf{F}=0$.
For suppose there were a point P_{0} at which $(\operatorname{div} \mathbf{F})_{0} \neq 0-\operatorname{say}(\operatorname{div} \mathbf{F})_{0}>0$. Then by continuity, div $\mathbf{F}>0$ in a very small spherical ball D surrounding P_{0}, so that by the divergence theorem (S is the surface of the ball D),

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \operatorname{div} \mathbf{F} d V>0
$$

But this contradicts our hypothesis that $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0$ for every closed surface S.
6C-11 flux of $\mathbf{F}=\iint_{S} \mathbf{F} \cdot d \mathbf{n}=\iiint_{D} \operatorname{div} \mathbf{F} d V=\iiint_{D} 3 d V=3($ vol. of $D)$.

6D. Line Integrals in Space
6D-1 a) $C: \quad x=t, d x=d t ; \quad y=t^{2}, d y=2 t d t ; \quad z=t^{3}, d z=3 t^{2} d t$;

$$
\begin{aligned}
& \int_{C} y d x+z d y-x d z=\int_{0}^{1}\left(t^{2}\right) d t+t^{3}(2 t d t)-t\left(3 t^{2} d t\right) \\
&\left.=\int_{0}^{1}\left(t^{2}+2 t^{4}-3 t^{3}\right) d t=\frac{t^{3}}{3}+\frac{2 t^{5}}{5}-\frac{3 t^{4}}{4}\right]_{0}^{1}=\frac{1}{3}+\frac{2}{5}-\frac{3}{4}=-\frac{1}{60}
\end{aligned}
$$

b) $C: x=t, y=t, z=t ; \quad \int_{C} y d x+z d y-x d z=\int_{0}^{1} t d t=\frac{1}{2}$.
c) $C=C_{1}+C_{2}+C_{3} ; \quad C_{1}: y=z=0 ; \quad C_{2}: x=1, z=0 ; \quad C_{3}: x=1, y=1$

$$
\int_{C} y d x+z d y-x d z=\int_{C_{1}} 0+\int_{C_{2}} 0+\int_{0}^{1}-d z=-1
$$

d) $C: x=\cos t, y=\sin t, z=t ; \quad \int_{C} z x d x+z y d y+x d z$

$$
=\int_{0}^{2 \pi} t \cos t(-\sin t d t)+t \sin t(\cos t d t)+\cos t d t=\int_{0}^{2 \pi} \cos t d t=0
$$

6D-2 The field \mathbf{F} is always pointed radially outward; if C lies on a sphere centered at the origin, its unit tangent \mathbf{t} is always tangent to the sphere, therefore perpendicular to the radius; this means $\mathbf{F} \cdot \mathbf{t}=0$ at every point of C. Thus $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot \mathbf{t} d s=0$.

6D-4 a) $\mathbf{F}=\nabla f=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}$.
b) (i) Directly, letting C be the helix: $x=\cos t, y=\sin t, z=t$, from $t=0$ to $t=2 n \pi$, $\int_{C} M d x+N d y+P d z=\int_{0}^{2 n \pi} 2 \cos t(-\sin t) d t+2 \sin t(\cos t) d t+2 t d t=\int_{0}^{2 n \pi} 2 t d t=(2 n \pi)^{2}$.
b) (ii) Choose the vertical path $x=1, y=0, z=t$; then

$$
\int_{C} M d x+N d y+P d z=\int_{0}^{2 n \pi} 2 t d t=(2 n \pi)^{2}
$$

b) (iii) By the First Fundamental Theorem for line integrals,

$$
\left.\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,0,2 n \pi)-f(1,0,0)=91^{2}+(2 n \pi)^{2}\right)-1^{2}=(2 n \pi)^{2}
$$

6D-5 By the First Fundamental Theorem for line integrals,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\left.\sin (x y z)\right|_{Q}-\left.\sin (x y z)\right|_{P}
$$

where C is any path joining P to Q. The maximum value of this difference is $1-(-1)=2$, since $\sin (x y z)$ ranges between -1 and 1 .

For example, any path C connecting $P:(1,1,-\pi / 2)$ to $Q:(1,1, \pi / 2)$ will give this maximum value of 2 for $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

6E. Gradient Fields in Space

6E-1 a) Since $M=x^{2}, N=y^{2}, P=z^{2}$ are continuously differentiable, the differential is exact because $N_{z}=P_{y}=0, \quad M_{z}=P_{x}=0, \quad M_{y}=N_{x}=0$.
b) Exact: M, N, P are continuously differentiable for all x, y, z, and

$$
N_{z}=P_{y}=2 x y, \quad M_{z}=P_{x}=y^{2}, \quad M_{y}=N_{x}=2 y z
$$

c) Exact: M, N, P are continuously differentiable for all x, y, z, and

$$
N_{z}=P_{y}=x, \quad M_{z}=P_{x}=y, \quad M_{y}=N_{x}=6 x^{2}+z
$$

$\mathbf{6 E - 2} \quad \operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ x^{2} y & y z & x y z^{2}\end{array}\right|=\left(x z^{2}-y\right) \mathbf{i}-y z^{2} \mathbf{j}-x^{2} \mathbf{k}$.
$\mathbf{6 E - 3}$ a) It is easily checked that $\operatorname{curl} \mathbf{F}=0$.
b) (i) using method I:

$$
\begin{aligned}
f\left(x_{1}, y_{1}, z_{1}\right) & =\int_{(0,0,0)}^{\left(x_{1}, y_{1}, z_{1}\right)} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{x_{1}} x d x+\int_{0}^{y_{1}} y d y+\int_{0}^{z_{1}} z d z=\frac{1}{2} x_{1}^{2}+\frac{1}{2} y_{1}^{2}+\frac{1}{2} z_{2}^{2}
\end{aligned}
$$

Therefore $\quad f(x, y, z)=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)+c$.

(ii) Using method II: We seek $f(x, y, z)$ such that $f_{x}=2 x y+z, f_{y}=x^{2}, f_{z}=x$.
$f_{x}=2 x y+z \quad \Rightarrow \quad f=x^{2} y+x z+g(y, z)$.
$f_{y}=x^{2}+g_{y}=x^{2} \quad \Rightarrow \quad g_{y}=0 \quad \Rightarrow \quad g=h(z)$
$f_{z}=x+h^{\prime}(z)=x \quad \Rightarrow \quad h^{\prime}=0 \quad \Rightarrow \quad h=c$
Therefore $f(x, y, z)=x^{2} y+x z+c$.
(iii) If $f_{x}=y z, f_{y}=x z, f_{z}=x y$, then by inspection, $f(x, y, z)=x y z+c$.

6E-4 Let $F=f-g$. Since ∇ is a linear operator, $\quad \nabla F=\nabla f-\nabla g=\mathbf{0}$
We now show: $\quad \nabla F=\mathbf{0} \Rightarrow F=c$.
Fix a point $P_{0}:\left(x_{0}, y_{0}, z_{0}\right)$. Then by the Fundamental Theorem for line integrals,

$$
F(P)-F\left(P_{0}\right)=\int_{P_{0}}^{P} \nabla F \cdot d \mathbf{r}=0
$$

Therefore $F(P)=F\left(P_{0}\right)$ for all P, i.e., $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)=c$.

6E-5 $\quad \mathbf{F}$ is a gradient field only if these equations are satisfied:

$$
N_{z}=P_{y}: 2 x z+a y=b x z+2 y \quad M_{z}=P_{x}: 2 y z=b y z \quad M_{y}=N_{x}: z^{2}=z^{2}
$$

Thus the conditions are: $a=2, \quad b=2$.
Using these values of a and b we employ Method 2 to find the potential function f :
$f_{x}=y z^{2} \quad \Rightarrow \quad f=x y z^{2}+g(y, z) ;$
$f_{y}=x z^{2}+g_{y}=x z^{2}+2 y z \quad \Rightarrow \quad g_{y}=2 y z \quad \Rightarrow \quad g=y^{2} z+h(z)$
$f_{z}=2 x y z+y^{2}+h^{\prime}(z)=2 x y z+y^{2} \quad \Rightarrow \quad h=c$;
therefore, $\quad f(x, y, z)=x y z^{2}+y^{2} z+c$.

6E-6 a) $M d x+N d y+P d z$ is an exact differential if there exists some function $f(x, y, z)$ for which $d f=M d x+N d y+P d z$; that, is, for which $f_{x}=M, f_{y}=N, f_{z}=P$.
b) The given differential is exact if the following equations are satisfied:

$$
\begin{array}{ll}
N_{z}=P_{y}: & (a / 2) x^{2}+6 x y^{2} z+3 b y z^{2}=3 x^{2}+3 c x y^{2} z+12 y z^{2} \\
M_{z}=P_{x}: & a x y+2 y^{3} z=6 x y+c y^{3} z \\
M_{y}=N_{x}: & a x z+3 y^{2} z^{2}=a x z+3 y^{2} z^{2}
\end{array}
$$

Solving these, we find that the differential is exact if $a=6, b=4, c=2$.
c) We find $f(x, y, z)$ using method 2 :

$$
\begin{aligned}
& f_{x}=6 x y z+y^{3} z^{2} \Rightarrow f=3 x^{2} y z+x y^{3} z^{2}+g(y, z) ; \\
& f_{y}=3 x^{2} z+3 x y^{2} z^{2}+g_{y}=3 x^{2} z+3 x y^{2} z^{2}+4 y z^{3} \quad \Rightarrow \quad g_{y}=4 y z^{3} \quad \Rightarrow \quad g=2 y^{2} z^{3}+h(z) \\
& f_{z}=3 x^{2} y+2 x y^{3} z+6 y^{2} z^{2}+h^{\prime}(z)=3 x^{2} y+2 x y^{3} z+6 y^{2} z^{2} \quad \Rightarrow \quad h^{\prime}(z)=0 \quad \Rightarrow \quad h=c .
\end{aligned}
$$

Therefore, $\quad f(x, y, z)=3 x^{2} y z+x y^{3} z^{2}+2 y^{2} z^{3}+c$.

6F. Stokes' Theorem

$\mathbf{6 F - 1}$ a) For the line integral, $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} x d x+y d y+z d z=0$,
 since the differential is exact.
For the surface integral, $\quad \nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ x & y & z\end{array}\right|=\mathbf{0}$, and therefore $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=0$.
b) Line integral: $\oint_{C} y d x+z d y+x d z=\oint_{C} y d x$, since $z=0$ and $d z=0$ on C.

Using $x=\cos t, y=\sin t, \int_{0}^{2 \pi}-\sin ^{2} t d t=-\int_{0}^{2 \pi} \frac{1-\cos 2 t}{2} d t=-\pi$.
Surface integral: curl $\mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ y & z & x\end{array}\right|=-\mathbf{i}-\mathbf{j}-\mathbf{k} ; \quad \mathbf{n}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$

$$
\left.\iint_{S} \nabla \times \mathbf{F}\right) \cdot \mathbf{n} d S=-\iint_{S}(x+y+z) d S
$$

To evaluate, we use $x=r \cos \theta, y=r \sin \theta, \quad z=\rho \cos \phi . \quad r=\rho \sin \phi, d S=\rho^{2} \sin \phi d \phi d \theta$; note that $\rho=1$ on S. The integral then becomes

$$
-\int_{0}^{2 \pi} \int_{0}^{\pi / 2}[\sin \phi(\cos \theta+\sin \theta)+\cos \phi] \sin \phi d \phi d \theta
$$

Inner: $-\left[(\cos \theta+\sin \theta)\left(\frac{1}{2}-\frac{1}{2} \cos 2 \phi\right)+\frac{1}{2} \sin ^{2} \phi\right]_{0}^{\pi / 2}=-\left[(\cos \theta+\sin \theta)+\frac{1}{2}\right]$;
Outer: $\int_{0}^{2 \pi}\left(-\frac{1}{2}-\cos \theta-\sin \theta\right) d \theta=-\pi$.
6F-2 The surface S is: $z=-x-y$, so that $f(x, y)=-x-y$.

$$
\mathbf{n} d S=\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y=\langle 1,1,1\rangle d x d y
$$

(Note the signs: n points upwards, and therefore should have a positive k-component.)

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y & z & x
\end{array}\right|=-\mathbf{i}-\mathbf{j}-\mathbf{k}
$$

Therefore $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=-\iint_{S^{\prime}} 3 d A=-3 \pi$, where S^{\prime} is the projection of S, i.e., the interior of the unit circle in the $x y$-plane.

As for the line integral, we have $C: x=\cos t, y=\sin t z=-\cos t-\sin t$, so that

$$
\begin{aligned}
& \oint_{C} y d x+z d y+x d z=\int_{0}^{2 \pi}\left[-\sin ^{2} t-\left(\cos ^{2} t+\sin t \cos t\right)+\cos t(\sin t-\cos t)\right] d t \\
& \quad=\int_{0}^{2 \pi}\left(-\sin ^{2} t-\cos ^{2} t-\cos ^{2} t\right) d t=\int_{0}^{2 \pi}\left[-1-\frac{1}{2}(1+\cos 2 t)\right] d t=-\frac{3}{2} \cdot 2 \pi=-3 \pi
\end{aligned}
$$

6F-3 Line integral: $\oint_{C} y z d x+x z d y+x y d z$ over the path $C=C_{1}+\ldots+C_{4}$: $\int_{C_{1}}=0, \quad$ since $z=d z=0$ on $C_{1} ;$ $\int_{C_{2}}=\int_{0}^{1} 1 \cdot 1 d z=1, \quad$ since $x=1, y=1, d x=0, d y=0$ on $C_{2} ;$ $\int_{C_{3}} y d x+x d y=\int_{1}^{0} x d x+x d x=-1, \quad$ since $y=x, z=1, d z=0$ on $C_{3} ;$ $\int_{C_{4}}=0, \quad$ since $x=0, y=0$ on C_{4}.
Adding up, we get $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}+\int_{C_{4}}=0$. For the surface integral, $\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ y z & x z & x y\end{array}\right|=\mathbf{i}(x-x)-\mathbf{j}(y-y)+\mathbf{k}(z-z)=\mathbf{0} ;$ thus $\iint \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=0$.

6F-5 Let S_{1} be the top of the cylinder (oriented so $\mathbf{n}=\mathbf{k}$), and S_{2} the side.
a) We have curl $\mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ -y & x & x^{2}\end{array}\right|=-2 x \mathbf{j}+2 \mathbf{k}$.

For the top: $\iint_{S_{1}} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{1}} 2 d S=2\left(\right.$ area of $\left.S_{1}\right)=2 \pi a^{2}$.

For the side: we have $\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}}{a}$, and $d S=d z \cdot a d \theta$, so that $\left.\iint_{S_{2}} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=\int_{0}^{2 \pi} \int_{0}^{h} \frac{-2 x y}{a} a d z d \theta=\int_{0}^{2 \pi}-2 h(a \cos \theta)(a \sin \theta) d \theta=-h a^{2} \sin ^{2} \theta\right]_{0}^{2 \pi}=0$.

Adding, $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}}+\iint_{S_{2}}=2 \pi a^{2}$.
b) Let C be the circular boundary of S, parameterized by $x=a \cos \theta, y=a \sin \theta, z=0$. Then using Stokes' theorem,

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C}-y d x+x d y+x^{2} d z=\int_{0}^{2 \pi}\left(a^{2} \sin ^{2} \theta+a^{2} \cos ^{2} \theta\right) d \theta=2 \pi a^{2}
$$

6G. Topological Questions

6G-1 a) yes b) no \quad c) yes \quad d) no; yes; no; yes; no
6G-2 Recall that $\rho_{x}=x / \rho$, etc. Then, using the chain rule, $\operatorname{curl} \mathbf{F}=\left(n \rho^{n-1} z \frac{y}{\rho}-n \rho^{n-1} y \frac{z}{\rho}\right) \mathbf{i}+\left(n \rho^{n-1} z \frac{x}{\rho}-n \rho^{n-1} x \frac{z}{\rho}\right) \mathbf{j}+\left(n \rho^{n-1} y \frac{x}{\rho}-n \rho^{n-1} x \frac{y}{\rho}\right) \mathbf{k}$.

Therefore curl $\mathbf{F}=\mathbf{0}$. To find the potential function, we let P_{0} be any convenient starting point, and integrate along some path to $P_{1}:\left(x_{1}, y_{1}, z_{1}\right)$. Then, if $n \neq-2$, we have

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{P_{0}}^{P_{1}} \rho^{n}(x d x+y d y+z d z)=\int_{P_{0}}^{P_{1}} \rho^{n} \frac{1}{2} d\left(\rho^{2}\right) \\
& \left.=\int_{P_{0}}^{P_{1}} \rho^{n+1} d \rho=\frac{\rho^{n+2}}{n+2}\right]_{P_{0}}^{P_{1}}=\frac{\rho_{1}^{n+2}}{n+2}-\frac{\rho_{0}^{n+2}}{n+2}=\frac{\rho_{1}^{n+2}}{n+2}+c, \text { since } P_{0} \text { is fixed. }
\end{aligned}
$$

Therefore, we get $\mathbf{F}=\nabla \frac{\rho^{n+2}}{n+2}, \quad$ if $n \neq-2$.
If $n=-2$, the line integral becomes $\int_{P_{0}}^{P_{1}} \frac{d \rho}{\rho}=\ln \rho_{1}+c$, so that $\mathbf{F}=\nabla(\ln \rho)$.

6H. Applications and Further Exercises

6H-1 Let $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$. By the definition of curl \mathbf{F}, we have

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left(P_{y}-N_{z}\right) \mathbf{i}+\left(M_{z}-P_{x}\right) \mathbf{j}+\left(N_{x}-M_{y}\right) \mathbf{k} \\
\nabla \cdot(\nabla \times \mathbf{F})=\left(P_{y x}-N_{z x}\right)+\left(M_{z y}-P_{x y}\right)+\left(N_{x z}-M_{y z}\right)
\end{gathered}
$$

If all the mixed partials exist and are continuous, then $P_{x y}=P_{y x}$, etc. and the right-hand side of the above equation is zero: $\operatorname{div}(\operatorname{curl} F)=0$.

6H-2 a) Using the divergence theorem, and the previous problem, (D is the interior of S),

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \operatorname{div} \operatorname{curl} \mathbf{F} d V=\iiint_{D} 0 d V=0
$$

b) Draw a closed curve C on S that divides it into two pieces S_{1} and S_{2} both having C as boundary. Orient C compatibly with S_{1}, then the curve C^{\prime} obtained by reversing the orientation of C will be oriented compatibly with S_{2}. Using Stokes' theorem,

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{2}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}+\oint_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}=0
$$

since the integral on C^{\prime} is the negative of the integral on C.

Or more simply, consider the limiting case where C has been shrunk to a point; even as a point, it can still be considered to be the boundary of S. Since it has zero length, the line integral around it is zero, and therefore Stokes' theorem gives

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

6H-10 Let C be an oriented closed curve, and S a compatibly-oriented surface having C as its boundary. Using Stokes' theorem and the Maxwell equation, we get respectively

$$
\iint_{S} \nabla \times \mathbf{B} \cdot d \mathbf{S}=\oint_{C} \mathbf{B} \cdot d \mathbf{r} \quad \text { and } \quad \iint_{S} \nabla \times \mathbf{B} \cdot d \mathbf{S}=\iint_{S} \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \cdot d \mathbf{S}=\frac{1}{c} \frac{d}{d t} \iint_{S} E \cdot d \mathbf{S} .
$$

Since the two left sides are the same, we get $\oint_{C} \mathbf{B} \cdot d \mathbf{r}=\frac{1}{c} \frac{d}{d t} \iint_{S} \mathbf{E} \cdot d \mathbf{S}$.
In words: for the magnetic field \mathbf{B} produced by a moving electric field $\mathbf{E}(t)$, the magnetomotive force around a closed loop C is, up to a constant factor depending on the units, the time-rate at which the electric flux through C is changing.

