18.02 EXAM 4 REVIEW

1. Triple integrals; surface integrals ($d V$ and $d S$)

Exercise. In each of rectangular, cylindrical and spherical coordinates, find the coordinate description of the following surfaces. Also find $d S$ and $d \boldsymbol{S}$ for these surfaces. (This extra exercise is provided not because this topic is emphasized over the others, but rather because we studied these coordinate systems a while ago. Recall that equations for surfaces are used as limits of integration in triple integrals as well as in setting up surface integrals.)
a) the sphere around the origin $(\rho=a)$; b) planes $x=a, y=a, z=a$; c) the cylinder $r=a$; d) the cone $\phi=\phi_{0} ;$ e) the sphere with origin at the South Pole $(\rho=2 a \cos \phi)$.
Example. $x=a \Longleftrightarrow r \cos \theta=a \Longleftrightarrow r=a / \cos \theta$. If $0 \leq a<b$, then the description of the "vertical slab" $a<x<b$ in cylindrical coodinates is

$$
a / \cos \theta<r<b / \cos \theta ; \quad-\pi / 2<\theta<\pi / 2 ; \quad-\infty<z<\infty
$$

(The limits on θ come from $\cos \theta>0$.)
Evaluation of integrals. You will be provided with the usual table of powers of sine and cosine. Know how to integrate using substitution, such as the substitution $u=\sin \theta$ to integrate $\sin ^{n} \theta \cos \theta d \theta$.

Types of integrals. You are expected to know the formula for mass and moments of inertia, and average value. Questions on Exam 4 in probability, if any, are limited to the all-important average value and probability as a ratio of masses, areas, or volumes, as in

$$
\text { Probability }=\frac{\operatorname{mass}(\text { part })}{\operatorname{mass}(\text { whole })}
$$

2. Line integrals in 3-D, gradient fields, curl, finding potential functions.

Test whether \boldsymbol{F} is a gradient field by computing curl \boldsymbol{F}. Use a systematic method (your choice) to find a potential function. Use that potential function to compute line integrals (Fundamental theorem of calculus for line integrals).
3. Stokes' theorem. If the curve C is the boundary of the surface S and they are compatibly oriented then

$$
\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\iint_{S}(\nabla \times \boldsymbol{F}) \cdot d \boldsymbol{S}
$$

Key formulas: On a surface $g(x, y, z)=c, d \boldsymbol{S}= \pm \frac{\nabla g}{g_{z}} d x d y$. (Or, for example using y and z as coordinates, $d \boldsymbol{S}= \pm \frac{\nabla g}{g_{x}} d y d z$.)

For graphs $z=f(x, y), d \boldsymbol{S}= \pm\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y$. (Or, for example, if $x=h(y, z)$, then $\left.d \boldsymbol{S}= \pm\left\langle 1,-h_{y},-h_{z}\right\rangle d y d z.\right)$
4. Divergence theorem. If the surface S encloses the solid region D, then

$$
\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}=\iiint_{D} \nabla \cdot \boldsymbol{F} d V
$$

with $d \boldsymbol{S}=\boldsymbol{n} d S$ oriented so that \boldsymbol{n} points away from D.

