Components and Projection

If \mathbf{A} is any vector and $\widehat{\mathbf{u}}$ is a unit vector then the component $\mathbf{~ o f ~} \mathbf{A}$ in the direction of $\widehat{\mathbf{u}}$ is

$$
\mathbf{A} \cdot \widehat{\mathbf{u}} .
$$

(Note: the component is a scalar.)
If θ is the angle between \mathbf{A} and $\widehat{\mathbf{u}}$ then since $|\widehat{\mathbf{u}}|=1$

$$
A \cdot \widehat{\mathbf{u}}=|\mathbf{A}||\widehat{\mathbf{u}}| \cos \theta=|\mathbf{A}| \cos \theta .
$$

The figure shows that geometrically this is the length of the leg of the right triangle with hypotenuse \mathbf{A} and one leg parallel to $\widehat{\mathbf{u}}$.

We also call the leg parallel to $\widehat{\mathbf{u}}$ the orthogonal projection of \mathbf{A} on $\widehat{\mathbf{u}}$.
For a non-unit vector: the component of \mathbf{A} in the direction of \mathbf{B} is simply the component of \mathbf{A} in the direction of $\widehat{\mathbf{u}}=\frac{\mathbf{B}}{|\mathbf{B}|}$. ($\widehat{\mathbf{u}}$ is the unit vector in the same direction as \mathbf{B}.)
Example: Find the component of \mathbf{A} in the direction of \mathbf{B}.
i) $|\mathbf{A}|=2,|\mathbf{B}|=5, \theta=\pi / 4$.

Answer: Referring to the figure above: the component is $|\mathbf{A}| \cos \theta=2 \cos (\pi / 4)=\sqrt{2}$. Note, the length of \mathbf{B} given is irrelevant, since we only care about the unit vector parallel to \mathbf{B}.
ii) $\mathbf{A}=\mathbf{i}+2 \mathbf{j}, \mathbf{B}=3 \mathbf{i}+4 \mathbf{j}$.

Answer: Unit vector in direction of \mathbf{B} is $\frac{\mathbf{B}}{|\mathbf{B}|}=\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j} \Rightarrow$ component is $\mathbf{A} \cdot \mathbf{B} /|\mathbf{B}|=$ $3 / 5+8 / 5=11 / 5$.
iii) Find the component of $\mathbf{A}=\langle 2,2\rangle$ in the direction of $\widehat{\mathbf{u}}=\langle-1,0\rangle$

Answer: The vector $\widehat{\mathbf{u}}$ is a unit vector, so the component is $\mathbf{A} \cdot \widehat{\mathbf{u}}=\langle 2,2\rangle \cdot\langle-1,0\rangle=-2$. The negative component is okay, it says the projection of \mathbf{A} and $\widehat{\mathbf{u}}$ point in opposite directions.

We emphasize one more time that the component of a vector is a scalar.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

