Equation of a plane

1. Find the equation of the plane containing the three points $P_{1}=(1,0,1), \quad P_{2}=(0,1,1)$, $P_{3}=(1,1,0)$.

Answer: This problem is identical (with changed numbers) to the worked example we just saw.
The vectors $\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}}$ and $\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}}$ are in the plane, so

$$
\mathbf{N}=\overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}} \times \overrightarrow{\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{3}}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right|=\mathbf{i}(-1)-\mathbf{j}(1)+\mathbf{k}(-1)=\langle-1,-1,-1\rangle .
$$

is orthogonal to the plane.
Now for any point $P=(x, y, z)$ in the plane, the vector $\overrightarrow{\mathbf{P}}_{\mathbf{1}} \mathbf{P}$ is also in the plane and is therefore orthogonal to \mathbf{N}. Expressing this with the dot product we get

$$
\begin{array}{ll}
& \mathbf{N} \cdot \overrightarrow{\mathbf{P}_{1} \mathbf{P}}=0 \\
\Leftrightarrow & \langle-1,-1,-1\rangle \cdot\langle x-1, y, z-1\rangle=0 \\
\Leftrightarrow & -(x-1)-y-(z-1)=0 \\
\Leftrightarrow & x+y+z=2 .
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

