Solutions to linear systems

1. Consider the system

$$
\begin{array}{r}
x+y+2 z=0 \\
2 x+y+c z=0 \\
3 x+y+6 z=0
\end{array}
$$

a) Take $c=1$ and find all the solutions.
b) Take $c=4$ and find all the solutions.

Answer: a) In matrix form we have

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
3 & 1 & 6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Call the coefficient matrix A. First we check if $\operatorname{det}(A)=0$.

$$
\left|\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
3 & 1 & 6
\end{array}\right|=1(5)-1(9)+2(-1)=-6 \neq 0
$$

So, the inverse exists and can be used to find the (unique) solution. We don't actually need to compute the inverse because we know

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=A^{-1}\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

b) The coefficient matrix is now

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 4 \\
3 & 1 & 6
\end{array}\right)
$$

First we check if $\operatorname{det}(A)=0$.

$$
\left|\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 4 \\
3 & 1 & 6
\end{array}\right|=1(2)-1(0)+2(-1)=0
$$

Since $\operatorname{det}(A)=0$ there are infinitely many solutions to the homogeneous system. We find them by taking a cross product of two rows of A.

$$
\langle 1,1,2\rangle \times\langle 2,1,4\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 2 \\
2 & 1 & 4
\end{array}\right|=\mathbf{i}(2)-\mathbf{j}(0)+\mathbf{k}(-1)=\langle 2,0,-1\rangle .
$$

Therefore, all solutions are of the form

$$
(x, y, z)=(2 a, 0,-a)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

