18.02 Problem Set 3, Part II Solutions

1. (b) To get to the point P, start at the origin, add the vector $\langle 0, 2 \rangle$ to go up to the center of the disk at t = 0; then add the vector $\langle t, 0 \rangle$ to get to the center of the disk at time t; and finally (do what it takes to) shift over by one unit at an angle $\theta = t/2$, measured clockwise from the vertical (see below). How to do that last move? Just add the vector $-\langle \sin(t/2), \cos(t/2) \rangle$, as can be seen by from a sketch.

Combining, we get $\overrightarrow{OP}(t) = \langle 0, 2 \rangle + \langle t, 0 \rangle + \langle -\sin(t/2), -\cos(t/2) \rangle$ or $\mathbf{r} = \mathbf{r}(t) = \langle t - \sin(t/2), 2 - \cos(t/2) \rangle.$

The reason that the angle is $\theta = t/2$ after time t is as follows: the center of the disk has moved t units to the right. Since the disk rolls without slipping, the horizontal distance it travels is equal to $r\theta$ = the circular arclength "unrolled" by the disk, where r is the radius and θ the central angle in radians. Since r = 2 and the horizontal distance is t, we get $t = 2\theta$.

(c) See applet. The shape of of the curve is an elongated periodic 'wave' created by the up-and-down movement of the point as the wheel moves to the right.

2. (a) $\mathbf{r}(t)$ is clearly in the plane through O defined by \mathbf{u} and \mathbf{v} . But $|\mathbf{r}(t)|^2 = (\mathbf{u} \cos(t) + \mathbf{v} \sin(t)) \cdot (\mathbf{u} \cos(t) + \mathbf{v} \sin(t)) = \cos^2(t) + \sin^2(t) = 1$ since $\mathbf{u} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{v} = 1$ and $\mathbf{u} \cdot \mathbf{v} = 0$ by assumption. So $\mathbf{r}(t)$ sweeps out the unit circle centered at O in \mathcal{P} .

b) We need to find two orthogonal unit vectors \mathbf{u} and \mathbf{v} which lie in the plane given by x + 2y + z = 0; then we can use the result of part(a). To get the first one, we can use take any vector orthogonal to $\mathbf{n} = \langle 1, 2, 1 \rangle$, i.e. any vector $\mathbf{u}_1 = \langle p, q, r \rangle$ with p + 2q + r = 0, and then make it a unit vector. We'll pick $\langle 1, -1, 1 \rangle$ to get $\mathbf{u} = \frac{1}{\sqrt{3}} \langle 1, -1, 1 \rangle$. To get \mathbf{v} , we can just take the cross- product of $\mathbf{u}_1 \times \mathbf{n}$, and then also make it a unit vector. This gives \mathbf{v}_1 $= \langle 1, -1, 1 \rangle \times \langle 1, 2, 1 \rangle = 3 \langle -1, 0, 1 \rangle$ and then $\mathbf{v} = \frac{1}{\sqrt{2}} \langle -1, 0, 1 \rangle$. With these choices we get

$$\mathbf{r}(t) = \frac{1}{\sqrt{3}} \langle 1, -1, 1 \rangle \cos(t) + \frac{1}{\sqrt{2}} \langle -1, 0, 1 \rangle \sin(t),$$

or $x = \frac{1}{\sqrt{3}} \cos(t) - \frac{1}{\sqrt{2}} \sin(t), y = -\frac{1}{\sqrt{3}} \cos(t), z = \frac{1}{\sqrt{3}} \cos(t) + \frac{1}{\sqrt{2}} \sin(t).$

Note: other choices for \mathbf{u}_1 will give other vectors \mathbf{v} and the resulting equations will look different, but they will be equivalent (i.e. give the same curve C).

3. a) Any such line L must have direction vector $\langle a, b, c \rangle$ which is normal to $\langle 1, 2, 1 \rangle$. So we must have

$$a + 2b + c = 0.$$

Since the line L passes though O, we can write the equation of L in the point-direction form: x = at, y = bt, z = ct, and then use the equation a + 2b + c = 0 above, we get

$$x = a t, \quad y = b t, \quad z = (-a - 2b) t.$$

But L is described redundantly: scaling a and b equally gives an equivalent equation. To remove this redundancy, we need to look at two cases: either b = 0 in which case we get the line x = t, y = 0, z = -t, or $b \neq 0$ in which case we may divide through by b to get

$$x = \alpha t$$
, $y = t$, $z = (-\alpha - 2) t$

where the parameter α corresponds to a/b.

b) Since these lines all pass through O, they can be described by their unit direction vectors. The fact that the lines all lie in \mathcal{P} means that their direction vectors all lie in \mathcal{P} . The tips of these unit vectors (considered as origin vectors) form a circle. So we have a circle's worth of lines through O lying in \mathcal{P} .

Note that the family of lines described algebraically in part(a) is a oneparameter family, with α as the parameter, and that this is consistent with the geometric fact that we have 1-dimensional circle of lines.

4. (a) Let P_t be the shadow of the point $(\cos t, \sin t, 2)$ on the plane \mathcal{P}_{α} : my + z = 0 for an arbitrary but temporarily fixed value of t. See figure.

(b) Let P_t be the intersection of the line L_t joining (0,0,4) to $(\cos t, \sin t, 2)$ with the plane \mathcal{P}_{α} . Let u be the parameter for L_t , then the vector-parametric equation for L_t is given by

$$L_t: \dot{R}_t(u) = \langle 0, 0, 4 \rangle + u \langle \cos t, \sin t, -2 \rangle$$

(since direction vector for L_t is $\langle \cos t, \sin t, 2 \rangle - \langle 0, 0, 4 \rangle$).

 $P_t = L_t \cap \mathcal{P}_{\alpha}: \text{ substitute } x = u \cos t, y = u \sin t, z = 4 - 2u \text{ into } my + z = 0 \rightarrow mu \sin t + (4 - 2u) = 0 \rightarrow u^* = \frac{4}{2 - m \sin t} \rightarrow P_t = \left(\frac{4 \cos t}{2 - m \sin t}, \frac{4 \sin t}{2 - m \sin t}, \frac{-4m \sin t}{2 - m \sin t}\right) \text{ (after simplification). Thus } \vec{r}_{\alpha}(t) = \vec{OP}_t = \text{the answer given (with } m = \tan \alpha).$ (c) $\alpha = 0$, so $\vec{r}_0(t) = \langle 2 \cos t, 2 \sin t, 0 \rangle$ is indeed an enlarged circle in the x-y plane.

 $|\vec{r}_{\alpha}(t) - \vec{r}_{0}(t)| = 2\sqrt{5}m|\frac{\sin t}{2-m\sin t}|$ (for m > 0, after simplification). That gives the following differences:

So the largest value is $\frac{2\sqrt{5m}}{2-m}$.

(The following paragraph is extra) To put this in perspective, if $\alpha = .1$ rad (so m = .1003...), then this distortion is 0.236... linear units. More generally, for small α , m is pretty close to α , so we can approximate the maximum distortion by $2\sqrt{5}\frac{\alpha/2}{1-\frac{\alpha}{2}} = \sqrt{5}\alpha(1+\frac{\alpha}{2}+(\frac{\alpha}{2})^2+\cdots)$ (geometric series), or $\sqrt{5}\alpha + O(\alpha^2)$.

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.