18.02 Problem Set 3, Part II Solutions

1. (b) To get to the point P, start at the origin, add the vector $\langle 0,2\rangle$ to go up to the center of the disk at $t=0$; then add the vector $\langle t, 0\rangle$ to get to the center of the disk at time t; and finally (do what it takes to) shift over by one unit at an angle $\theta=t / 2$, measured clockwise from the vertical (see below). How to do that last move? Just add the vector $-\langle\sin (t / 2), \cos (t / 2)\rangle$, as can be seen by from a sketch.
Combining, we get $\overrightarrow{O P}(t)=\langle 0,2\rangle+\langle t, 0\rangle+\langle-\sin (t / 2),-\cos (t / 2)\rangle$ or

$$
\mathbf{r}=\mathbf{r}(t)=\langle t-\sin (t / 2), 2-\cos (t / 2)\rangle .
$$

The reason that the angle is $\theta=t / 2$ after time t is as follows: the center of the disk has moved t units to the right. Since the disk rolls without slipping, the horizontal distance it travels is equal to $r \theta=$ the circular arclength "unrolled" by the disk, where r is the radius and θ the central angle in radians. Since $r=2$ and the horizontal distance is t, we get $t=2 \theta$.
(c) See applet. The shape of of the curve is an elongated periodic 'wave' created by the up-and-down movement of the point as the wheel moves to the right.
2. (a) $\mathbf{r}(t)$ is clearly in the plane through O defined by \mathbf{u} and \mathbf{v}. But $|\mathbf{r}(t)|^{2}$ $=(\mathbf{u} \cos (t)+\mathbf{v} \sin (t)) \cdot(\mathbf{u} \cos (t)+\mathbf{v} \sin (t))=\cos ^{2}(t)+\sin ^{2}(t)=1$ since $\mathbf{u} \cdot \mathbf{u}=\mathbf{v} \cdot \mathbf{v}=1$ and $\mathbf{u} \cdot \mathbf{v}=0$ by assumption. So $\mathbf{r}(t)$ sweeps out the unit circle centered at O in \mathcal{P}.
b) We need to find two orthogonal unit vectors \mathbf{u} and \mathbf{v} which lie in the plane given by $x+2 y+z=0$; then we can use the result of part(a). To get the first one, we can use take any vector orthogonal to $\mathbf{n}=\langle 1,2,1\rangle$, i.e. any vector $\mathbf{u}_{1}=\langle p, q, r\rangle$ with $p+2 q+r=0$, and then make it a unit vector. We'll pick $\langle 1,-1,1\rangle$ to get $\mathbf{u}=\frac{1}{\sqrt{3}}\langle 1,-1,1\rangle$. To get \mathbf{v}, we can just take the cross- product of $\mathbf{u}_{1} \times \mathbf{n}$, and then also make it a unit vector. This gives \mathbf{v}_{1} $=\langle 1,-1,1\rangle \times\langle 1,2,1\rangle=3\langle-1,0,1\rangle$ and then $\mathbf{v}=\frac{1}{\sqrt{2}}\langle-1,0,1\rangle$. With these choices we get

$$
\begin{gathered}
\mathbf{r}(t)=\frac{1}{\sqrt{3}}\langle 1,-1,1\rangle \cos (t)+\frac{1}{\sqrt{2}}\langle-1,0,1\rangle \sin (t) \\
\text { or } x=\frac{1}{\sqrt{3}} \cos (t)-\frac{1}{\sqrt{2}} \sin (t), y=-\frac{1}{\sqrt{3}} \cos (t), z=\frac{1}{\sqrt{3}} \cos (t)+\frac{1}{\sqrt{2}} \sin (t) .
\end{gathered}
$$

Note: other choices for \mathbf{u}_{1} will give other vectors \mathbf{v} and the resulting equations will look different, but they will be equivalent (i.e. give the same curve C).
3. a) Any such line E must have direction vector $\langle a, b, c\rangle$ which is normal to $\langle 1,2,1\rangle$. So we must have

$$
a+2 b+c=0 .
$$

Since the line L passes though O , we can write the equation of E in the point-direction form: $x=a t, y=b t, z=c t$, and then use the equation $a+2 b+c=0$ above, we get

$$
x=a t, \quad y=b t, \quad z=(-a-2 b) t .
$$

But E is described redundantly: scaling a and b equally gives an equivalent equation. To remove this redundancy, we need to look at two cases: either $b=0$ in which case we get the line $x=t, y=0, z=-t$, or $b \neq 0$ in which case we may divide through by b to get

$$
x=\alpha t, \quad y=t, \quad z=(-\alpha-2) t
$$

where the parameter α corresponds to a / b.
b) Since these lines all pass through O, they can be described by their unit direction vectors. The fact that the lines all lie in \mathcal{P} means that their direction vectors all lie in \mathcal{P}. The tips of these unit vectors (considered as origin vectors) form a circle. So we have a circle's worth of lines through O lying in \mathcal{P}.
Note that the family of lines described algebraically in part(a) is a oneparameter family, with α as the parameter, and that this is consistent with the geometric fact that we have 1-dimensional circle of lines.
4. (a) Let P_{t} be the shadow of the point $(\cos t, \sin t, 2)$ on the plane \mathcal{P}_{α} : $m y+z=0$ for an arbitrary but temporarily fixed value of t . See figure.

(b) Let P_{t} be the intersection of the line L_{t} joining $(0,0,4)$ to $(\cos t, \sin t, 2)$ with the plane \mathcal{P}_{α}. Let u be the parameter for L_{t}, then the vector-parametric equation for L_{t} is given by

$$
L_{t}: \vec{R}_{t}(u)=\langle 0,0,4\rangle+u\langle\cos t, \sin t,-2\rangle
$$

(since direction vector for L_{t} is $\langle\cos t, \sin t, 2\rangle-\langle 0,0,4\rangle$).
$P_{t}=L_{t} \cap \mathcal{P}_{\alpha}$: substitute $x=u \cos t, y=u \sin t, z=4-2 u$ into $m y+z=0 \rightarrow$ $m u \sin t+(4-2 u)=0 \rightarrow u^{*}=\frac{4}{2-m \sin t} \rightarrow P_{t}=\left(\frac{4 \cos t}{2-m \sin t}, \frac{4 \sin t}{2-m \sin t}, \frac{-4 m \sin t}{2-m \sin t}\right)($ after simplification). Thus $\vec{r}_{\alpha}(t)=\overrightarrow{O P}_{t}=$ the answer given (with $m=\tan \alpha$).
(c) $\alpha=0$, so $\vec{r}_{0}(t)=\langle 2 \cos t, 2 \sin t, 0\rangle$ is indeed an enlarged circle in the $x-y$ plane.
$\left|\vec{r}_{\alpha}(t)-\vec{r}_{0}(t)\right|=2 \sqrt{5} m\left|\frac{\sin t}{2-m \sin t}\right|$ (for $m>0$, after simplification). That gives the following differences:

$$
\begin{array}{c|c|c|c}
t=0 & t=\pi / 2 & t=\pi & t=3 \pi / 2 \\
0 & \frac{2 \sqrt{5} m}{2-m} & 0 & \frac{2 \sqrt{5} m}{2+m}
\end{array}
$$

So the largest value is $\frac{2 \sqrt{5} m}{2-m}$.
(The following paragraph is extra) To put this in perspective, if $\alpha=.1 \mathrm{rad}$ (so $m=.1003 \ldots$), then this distortion is $0.236 \ldots$ linear units. More generally, for small α, m is pretty close to α, so we can approximate the maximum distortion by $2 \sqrt{5} \frac{\alpha / 2}{1-\frac{\alpha}{2}}=\sqrt{5} \alpha\left(1+\frac{\alpha}{2}+\left(\frac{\alpha}{2}\right)^{2}+\cdots\right.$) (geometric series), or $\sqrt{5} \alpha+O\left(\alpha^{2}\right)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

