Functions of two variables

Examples: Functions of several variables
$f(x, y)=x^{2}+y^{2} \Rightarrow f(1,2)=5$ etc.
$f(x, y)=x y^{2} \mathrm{e}^{x+y}$
$f(x, y, z)=x y \log z$
Ideal gas law: $P=k T / V$.

Dependent and independent variables

In $z=f(x, y)$ we say x, y are independent variables and z is a dependent variable. This indicates that x and y are free to take any values and then z depends on these values. For now it will be clear which are which, later we'll have to take more care.

Graphs

For the function $y=f(x)$: there is one independent variable and one dependent variable, which means we need 2 dimensions for its graph.
Graphing technique:
go to x then compute $y=f(x)$ then go up to height y.
For $z=f(x, y)$ we have two independent and one dependent variable, so we need 3 dimensions to graph the function. The technique is the same as before.
Example: Consider $z=f(x, y)=x^{2}+y^{2}$.
To make the graph:
go to (x, y) then compute $z=f(x, y)$ then go up to height z.
We show the plot of three points: $f(0,0)=0, f(1,1)=2$ and $f(0, \sqrt{2})=2$.

The figure above shows more than just the graph of three points. Here are the steps we used to draw the graph. Remember, this is just a sketch, it should suggest the shape of the graph and some of its features.

1. First we draw the axes. The z-axis points up, the y-axis is to the right and the x-axis comes out of the page, so it is drawn at the angle shown. This gives a perspective with the eye somewhere in the first octant.
2. The $y z$-traces are those curves found by setting $x=$ a constant. We start with the trace when $x=0$. This is an upward pointing parabola in the $y z$-plane.
3. Next we sketch the trace with $z=3$. This is a circle of radius $\sqrt{3}$ at height $z=3$. Note, the traces where $z=$ constant are generally called level curves.
This is enough for this graph. Other graphs take other traces. You should expect to do a certain amount of trial and error before your figure looks right.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus
 Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

