Partial derivatives

Partial derivatives

Let $w=f(x, y)$ be a function of two variables. Its graph is a surface in $x y z$-space, as pictured.

Fix a value $y=y_{0}$ and just let x vary. You get a function of one variable,

$$
\begin{equation*}
w=f\left(x, y_{0}\right), \quad \text { the partial function for } y=y_{0} \tag{1}
\end{equation*}
$$

Its graph is a curve in the vertical plane $y=y_{0}$, whose slope at the point P where $x=x_{0}$ is given by the derivative

$$
\begin{equation*}
\left.\frac{d}{d x} f\left(x, y_{0}\right)\right|_{x_{0}}, \quad \text { or }\left.\quad \frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \tag{2}
\end{equation*}
$$

We call (2) the partial derivative of f with respect to x at the point $\left(x_{0}, y_{0}\right)$; the right side of (2) is the standard notation for it. The partial derivative is just the ordinary derivative of the partial function - it is calculated by holding one variable fixed and differentiating with respect to the other variable. Other notations for this partial derivative are

$$
f_{x}\left(x_{0}, y_{0}\right),\left.\quad \frac{\partial w}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}, \quad\left(\frac{\partial f}{\partial x}\right)_{0}, \quad\left(\frac{\partial w}{\partial x}\right)_{0}
$$

the first is convenient for including the specific point; the second is common in science and engineering, where you are just dealing with relations between variables and don't mention the function explicitly; the third and fourth indicate the point by just using a single subscript.

Analogously, fixing $x=x_{0}$ and letting y vary, we get the partial function $w=f\left(x_{0}, y\right)$, whose graph lies in the vertical plane $x=x_{0}$, and whose slope at P is the partial derivative of f with respect to y; the notations are

$$
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}, \quad f_{y}\left(x_{0}, y_{0}\right),\left.\quad \frac{\partial w}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}, \quad\left(\frac{\partial f}{\partial y}\right)_{0}, \quad\left(\frac{\partial w}{\partial y}\right)_{0}
$$

The partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ depend on $\left(x_{0}, y_{0}\right)$ and are therefore functions of x and y.

Written as $\partial w / \partial x$, the partial derivative gives the rate of change of w with respect to x alone, at the point $\left(x_{0}, y_{0}\right)$: it tells how fast w is increasing as x increases, when y is held constant.

For a function of three or more variables, $w=f(x, y, z, \ldots)$, we cannot draw graphs any more, but the idea behind partial differentiation remains the same: to define the partial derivative with respect to x, for instance, hold all the other variables constant and take the ordinary derivative with respect to x; the notations are the same as above:

$$
\frac{d}{d x} f\left(x, y_{0}, z_{0}, \ldots\right)=f_{x}\left(x_{0}, y_{0}, z_{0}, \ldots\right), \quad\left(\frac{\partial f}{\partial x}\right)_{0}, \quad\left(\frac{\partial w}{\partial x}\right)_{0}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

