Partial derivatives

1. Let
$$f(x,y) = e^{(x^2+y^2)} + x^2 + y^2 + xy + 2y + 3$$
.

a) Compute
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$.

b) Show the second partials can be computed in any order. That is,

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

c) Find
$$\frac{\partial f}{\partial x}(1,3)$$
.

b) To compute $\frac{\partial^2 f}{\partial x \partial y}$ we compute the partial with respect to x of $\frac{\partial f}{\partial y}$.

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} \left(2y e^{(x^2 + y^2)} + 2y + x + 2 \right) = 4xy e^{(x^2 + y^2)} + 1.$$

Likewise

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} \left(2x e^{(x^2 + y^2)} + 2x + y \right) = 4xy e^{(x^2 + y^2)} + 1.$$

We have shown the order of differentiation didn't matter.

c) Evaluating
$$\frac{\partial f}{\partial x}(1,3) = 2e^{10} + 5$$
.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.