Least squares interpolation

1. Use the method of least squares to fit a line to the three data points

$$
(0,0), \quad(1,2), \quad(2,1)
$$

Answer: We are looking for the line $y=a x+b$ that best models the data. The deviation of a data point $\left(x_{i}, y_{i}\right)$ from the model is

$$
y_{i}-\left(a x_{i}+b\right) .
$$

By best we mean the line that minimizes the sum of the squares of the deviation. That is we want to minimize

$$
\begin{aligned}
D & =(0-(a \cdot 0+b))^{2}+(2-(a \cdot 1+b))^{2}+(1-(a \cdot 2+b))^{2} \\
& =b^{2}+(2-a-b)^{2}+(1-2 a-b)^{2} .
\end{aligned}
$$

(Remember, the variables whose values are to be found are a and b.) We do not expand out the squares, rather we take the derivatives first. Setting the derivatives equal to 0 gives

$$
\begin{aligned}
& \frac{\partial D}{\partial a}=-2(2-a-b)-4(1-2 a-b)=0 \Rightarrow 10 a+6 b=8 \Rightarrow 5 a+3 b=4 \\
& \frac{\partial D}{\partial b}=2 b-2(2-a-b)-2(1-2 a-b)=0 \Rightarrow 6 a+6 b=6 \Rightarrow 3 a+3 b=3 .
\end{aligned}
$$

This linear system of two equations in two unknowns is easy to solve. We get

$$
a=\frac{1}{2}, \quad b=\frac{1}{2} .
$$

Here is a plot of the problem.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

