## Second derivative test

1. Find and classify all the critical points of

$$
w=\left(x^{3}+1\right)\left(y^{3}+1\right) .
$$

Answer: Taking the first partials and setting them to 0 :

$$
w_{x}=3 x^{2}\left(y^{3}+1\right)=0 \quad \text { and } \quad w_{y}=3 y^{2}\left(x^{3}+1\right)=0
$$

The first equation implies $x=0$ or $y=-1$. We use these one at a time in the second equation.
If $x=0$ then $w_{y}=0 \Rightarrow y=0 \Rightarrow(0,0)$ is a critical point.
If $y=-1$ then $w_{y}=0 \Rightarrow x^{3}+1=0 \Rightarrow x=-1 \Rightarrow(-1,-1)$ is a critical point.
The critical points are $(0,0)$ and $(-1,-1)$.
Taking second partials:

$$
w_{x x}=6 x\left(y^{3}+1\right), \quad w_{x y}=9 x^{2} y^{2}, \quad w_{y y}=6 y\left(x^{3}+1\right) .
$$

We analyze each critical point in turn.
At $(-1,-1): A=w_{x x}(-1,-1)=0, \quad B=w_{x y}(-1,-1)=9, \quad C=w_{y y}(-1,-1)=0$. Therefore $A C-B^{2}=-81<0$, which implies the critical point is a saddle.
At $(0,0): \quad A=w_{x x}(0,0)=0, \quad B=w_{x y}(0,0)=0, \quad C=z_{y y}(-1,2)=0$. Therefore $A C-B^{2}=0$. The second derivative test fails.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

