Second derivative test

1. Find and classify all the critical points of

$$
f(x, y)=x^{6}+y^{3}+6 x-12 y+7 .
$$

Answer: Taking the first partials and setting them to 0 :

$$
\frac{\partial z}{\partial x}=6 x^{5}+6=0 \quad \text { and } \quad \frac{\partial z}{\partial y}=3 y^{2}-12=0 .
$$

The first equation implies $x=-1$ and the second implies $y= \pm 2$. Thus, the critical points are $(-1,2)$ and $(-1,-2)$.
Taking second partials:

$$
\frac{\partial^{2} z}{\partial x^{2}}=30 x^{4}, \quad \frac{\partial^{2} z}{\partial x y}=0, \quad \frac{\partial^{2} z}{\partial y^{2}}=6 y .
$$

We analyze each critical point in turn.
At $(-1,-2): A=z_{x x}(-1,-2)=30, \quad B=z_{x y}(-1,-2)=0, \quad C=z_{y y}(-1,-2)=-12$.
Therefore $A C-B^{2}=-360<0$, which implies the critical point is a saddle.
At $(-1,2): A=z_{x x}(-1,2)=30, \quad B=z_{x y}(-1,2)=0, \quad C=z_{y y}(-1,2)=12$.
Therefore $A C-B^{2}=360>0$ and $A>0$, which implies the critical point is a minimum.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

