Chain rule and total differentials

1. Find the total differential of $w=z \mathrm{e}^{(x+y)}$ at $(0,0,1)$.

Answer: The total differential at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
d w=w_{x}\left(x_{0}, y_{0}, z_{0}\right) d x+w_{y}\left(x_{0}, y_{0}, z_{0}\right) d y+w_{z}\left(x_{0}, y_{0}, z_{0}\right) d z
$$

In our case,

$$
w_{x}=z \mathrm{e}^{(x+y)}, \quad w_{y}=z \mathrm{e}^{(x+y)}, \quad w_{z}=\mathrm{e}^{(x+y)}
$$

Substituting in the point $(0,0,1)$ we get: $w_{x}(0,0,1)=1, \quad w_{y}(0,0,1)=1, \quad w_{z}(0,0,1)=1$. Thus,

$$
d w=d x+d y+d z
$$

2. Suppose $w=z \mathrm{e}^{(x+y)}$ and $x=t, y=t^{2}, \quad z=t^{3}$. Compute $\frac{d w}{d t}$ and evaluate it when $t=2$.
Answer: We use the chain rule:

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} \\
& =\left(z \mathrm{e}^{(x+y)}\right)(1)+\left(z \mathrm{e}^{(x+y)}\right)(2 t)+\left(\mathrm{e}^{(x+y)}\right)\left(3 t^{2}\right)
\end{aligned}
$$

At $t=2$ we have $x=2, y=4, z=8$. Thus,

$$
\left.\frac{d w}{d t}\right|_{2}=8 \mathrm{e}^{6}+8 \mathrm{e}^{6}(4)+\mathrm{e}^{6}(12)=52 \mathrm{e}^{6} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

