Chain Rule and Total Differentials

1. Find the total differential of $w=x^{3} y z+x y+z+3$ at $(1,2,3)$.

Answer: The total differential at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
d w=w_{x}\left(x_{0}, y_{0}, z_{0}\right) d x+w_{y}\left(x_{0}, y_{0}, z_{0}\right) d y+w_{z}\left(x_{0}, y_{0}, z_{0}\right) d z
$$

In our case,

$$
w_{x}=3 x^{2} y z+y, \quad w_{y}=x^{3} z+x, \quad w_{z}=x^{3} y+1 .
$$

Substituting in the point $(1,2,3)$ we get: $w_{x}(1,2,3)=20, w_{y}(1,2,3)=4, w_{z}(1,2,3)=3$.
Thus,

$$
d w=20 d x+4 d y+3 d z
$$

2. Suppose $w=x^{3} y z+x y+z+3$ and

$$
x=3 \cos t, \quad y=3 \sin t, \quad z=2 t .
$$

Compute $\frac{d w}{d t}$ and evaluate it at $t=\pi / 2$.
Answer: We do not substitute for x, y, z before differentiating, so we can practice the chain rule.

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} \\
& =\left(3 x^{2} y z+y\right)(-3 \sin t)+\left(x^{3} z+x\right)(3 \cos t)+\left(x^{3} y+1\right)(2)
\end{aligned}
$$

At $t=\pi / 2$ we have $x=0, y=3, z=\pi, \quad \sin \pi / 2=1, \cos \pi / 2=0$.
Thus,

$$
\left.\frac{d w}{d t}\right|_{\pi / 2}=3(-3)+3(0)+(1) 2=-7 .
$$

3. Show how the tangent approximation formula leads to the chain rule that was used in the previous problem.
Answer: The approximation formula is

$$
\left.\Delta w \approx \frac{\partial f}{\partial x}\right|_{o} \Delta x+\left.\frac{\partial f}{\partial y}\right|_{o} \Delta y+\left.\frac{\partial f}{\partial z}\right|_{o} \Delta z
$$

If x, y, z are functions of time then dividing the approximation formula by Δt gives

$$
\left.\frac{\Delta w}{\Delta t} \approx \frac{\partial f}{\partial x}\right|_{o} \frac{\Delta x}{\Delta t}+\left.\frac{\partial f}{\partial y}\right|_{o} \frac{\Delta y}{\Delta t}+\left.\frac{\partial f}{\partial z}\right|_{o} \frac{\Delta z}{\Delta t} .
$$

In the limit as $\Delta t \rightarrow 0$ we get the chain rule.
Note: we use the regular 'd' for the derivative $\frac{d w}{d t}$ because in the chain of computations

$$
t \rightarrow x, y, z \rightarrow w
$$

the dependent variable w is ultimately a function of exactly one independent variable t. Thus, the derivative with respect to t is not a partial derivative.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

