Problems: Chain Rule Practice

One application of the chain rule is to problems in which you are given a function of x and y with inputs in polar coordinates. For example, let $w=\left(x^{2}+y^{2}\right) x y, x=r \cos \theta$ and $y=r \sin \theta$.

1. Use the chain rule to find $\frac{\partial w}{\partial r}$.

Answer: We apply the chain rule.

$$
\begin{aligned}
\frac{\partial w}{\partial r} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \\
& =\left(3 x^{2} y+y^{3}\right) \cos \theta+\left(3 x y^{2}+x^{3}\right) \sin \theta
\end{aligned}
$$

We could check our work by substituting to get $w=r^{4} \cos \theta \sin \theta$ and calculating $\frac{d w}{d r}$ directly. We practice using the chain rule because such substitutions are not always practical.
2. Find the total differential $d w$ in terms of $d r$ and $d \theta$.

Answer: We know $d w=w_{x} d x+w_{y} d y$. In terms of r and $\theta, d x=x_{r} d r+x_{\theta} d \theta=$ $\cos \theta d r-r \sin \theta d \theta$. Similarly, $d y=\sin \theta d r+r \cos \theta d \theta$. Thus,

$$
\begin{aligned}
d w & =w_{x}(\cos \theta d r-r \sin \theta d \theta)+w_{y}(\sin \theta d r+r \cos \theta d \theta) \\
& =\left(w_{x} \cos \theta+w_{y} \sin \theta\right) d r+\left(w_{y} r \cos \theta-w_{x} r \sin \theta\right) d \theta
\end{aligned}
$$

We could stop here or go on to compute:

$$
\begin{aligned}
d w & =\left[\left(3 x^{2} y+y^{3}\right) \cos \theta+\left(3 x y^{2}+x^{3}\right) \sin \theta\right] d r+\left[\left(3 x y^{2}+x^{3}\right) r \cos \theta-\left(3 x^{2} y+y^{3}\right) r \sin \theta\right] d \theta \\
& =4 r^{3} \cos \theta \sin \theta d r+r^{4}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) d \theta
\end{aligned}
$$

Note that the answer to (1) appears in the $d r$ component of $d w$. In practice, the best format for the answer is the one that is easiest to use.
3. Find $\frac{\partial w}{\partial r}$ at the point $(r, \theta)=(2, \pi / 4)$.

Answer: Recall that $\frac{\partial w}{\partial r}=\left(3 x^{2} y+y^{3}\right) \cos \theta+\left(3 x y^{2}+x^{3}\right) \sin \theta$. We need only compute $x=\sqrt{2}$ and $y=\sqrt{2}$ and plug in values.

$$
\begin{aligned}
\left(3 x^{2} y+y^{3}\right) \cos \theta+\left(3 x y^{2}+x^{3}\right) \sin \theta & =4(\sqrt{2})^{3}\left(\frac{\sqrt{2}}{2}\right)+4(\sqrt{2})^{3}\left(\frac{\sqrt{2}}{2}\right) \\
& =16
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

