Gradient: definition and properties

Definition of the gradient

If w = f(x, y), then $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ are the rates of change of w in the **i** and **j** directions. It will be quite useful to put these two derivatives together in a vector called the *gradient* of w.

grad
$$w = \left\langle \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y} \right\rangle.$$

We will also use the symbol ∇w to denote the gradient. (You read this as 'gradient of w' or 'grad w'.)

Of course, if we specify a point $P_0 = (x_0, y_0)$, we can evaluate the gradient at that point. We will use several notations for this

$$\operatorname{grad} w(x_0, y_0) = \boldsymbol{\nabla} w|_{P_0} = \boldsymbol{\nabla} w|_o = \left\langle \left. \frac{\partial w}{\partial x} \right|_o, \left. \frac{\partial w}{\partial y} \right|_o \right\rangle.$$

Note well the following: (as we look more deeply into properties of the gradient these can be points of confusion).

- 1. The gradient takes a scalar function f(x, y) and produces a vector ∇f .
- 2. The vector $\nabla f(x, y)$ lies in the plane.

For functions w = f(x, y, z) we have the gradient

grad
$$w = \nabla w = \left\langle \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z} \right\rangle.$$

That is, the gradient takes a scalar function of three variables and produces a three dimensional vector.

The gradient has many geometric properties. In the next session we will prove that for w = f(x, y) the gradient is perpendicular to the level curves f(x, y) = c. We can show this by direct computation in the following example.

Example 1: Compute the gradient of $w = (x^2 + y^2)/3$ and show that the gradient at $(x_0, y_0) = (1, 2)$ is perpendicular to the level curve through that point.

Answer: The gradient is easily computed

$$\boldsymbol{\nabla} w = \langle 2x/3, 2y/3 \rangle = \frac{2}{3} \langle x, y \rangle.$$

At (1,2) we get $\nabla w(1,2) = \frac{2}{3}\langle 1,2 \rangle$. The level curve through (1,2) is

$$(x^2 + y^2)/3 = 5/3$$

which is identical to $x^2 + y^2 = 5$. That is, it is a circle of radius $\sqrt{5}$ centered at the origin. Since the gradient at (1,2) is a multiple of $\langle 1, 2 \rangle$, it points radially outward and hence is perpendicular to the circle. Below is a figure showing the gradient field and the level curves.

Example 2: Consider the graph of $y = e^x$. Find a vector perpendicular to the tangent to $y = e^x$ at the point (1, e).

Old method: Find the slope take the negative reciprocal and make the vector.

New method: This graph is the level curve of $w = y - e^x = 0$.

 $\nabla w = \langle -e^x, 1 \rangle \Rightarrow (at \ x = 1) \ \nabla w(1, e) = \langle -e, 1 \rangle$ is perpendicular to the tangent vector to the graph, $\mathbf{v} = \langle 1, e \rangle$.

Higher dimensions

Similarly, for w = f(x, y, z) we get level surfaces f(x, y, z) = c. The gradient is perpendicular to the level surfaces.

Example 3: Find the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 6$ at the point P = (1, 1, 1).

Answer: Introduce a new variable

$$w = x^2 + 2y^2 + 3z^2.$$

Our surface is the level surface w = 6. Saying the gradient is perpendicular to the surface means exactly the same thing as saying it is normal to the tangent plane. Computing

$$\nabla w = \langle 2x, 4y, 6z \rangle \Rightarrow \nabla w|_P = \langle 2, 4, 6 \rangle$$

Using point normal form we get the equation of the tangent plane is

$$2(x-1) + 4(y-1) + 6(z-1) = 0$$
, or $2x + 4y + 6z = 12$.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.