Gradient: definition and properties

Definition of the gradient

If $w=f(x, y)$, then $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ are the rates of change of w in the \mathbf{i} and \mathbf{j} directions.
It will be quite useful to put these two derivatives together in a vector called the gradient of w.

$$
\operatorname{grad} w=\left\langle\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}\right\rangle .
$$

We will also use the symbol ∇w to denote the gradient. (You read this as 'gradient of w' or 'grad w'.)
Of course, if we specify a point $P_{0}=\left(x_{0}, y_{0}\right)$, we can evaluate the gradient at that point. We will use several notations for this

$$
\operatorname{grad} w\left(x_{0}, y_{0}\right)=\left.\nabla w\right|_{P_{0}}=\left.\nabla w\right|_{o}=\left\langle\left.\frac{\partial w}{\partial x}\right|_{o},\left.\frac{\partial w}{\partial y}\right|_{o}\right\rangle
$$

Note well the following: (as we look more deeply into properties of the gradient these can be points of confusion).

1. The gradient takes a scalar function $f(x, y)$ and produces a vector ∇f.
2. The vector $\nabla f(x, y)$ lies in the plane.

For functions $w=f(x, y, z)$ we have the gradient

$$
\operatorname{grad} w=\nabla w=\left\langle\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}\right\rangle
$$

That is, the gradient takes a scalar function of three variables and produces a three dimensional vector.

The gradient has many geometric properties. In the next session we will prove that for $w=f(x, y)$ the gradient is perpendicular to the level curves $f(x, y)=c$. We can show this by direct computation in the following example.

Example 1: Compute the gradient of $w=\left(x^{2}+y^{2}\right) / 3$ and show that the gradient at $\left(x_{0}, y_{0}\right)=(1,2)$ is perpendicular to the level curve through that point.
Answer: The gradient is easily computed

$$
\nabla w=\langle 2 x / 3,2 y / 3\rangle=\frac{2}{3}\langle x, y\rangle
$$

At $(1,2)$ we get $\nabla w(1,2)=\frac{2}{3}\langle 1,2\rangle$. The level curve through $(1,2)$ is

$$
\left(x^{2}+y^{2}\right) / 3=5 / 3
$$

which is identical to $x^{2}+y^{2}=5$. That is, it is a circle of radius $\sqrt{5}$ centered at the origin. Since the gradient at $(1,2)$ is a multiple of $\langle 1,2\rangle$, it points

$z=\left(x^{2}+y^{2}\right) / 3$ radially outward and hence is perpendicular to the circle. Below is a figure showing the gradient field and the level curves.

Example 2: Consider the graph of $y=\mathrm{e}^{x}$. Find a vector perpendicular to the tangent to $y=\mathrm{e}^{x}$ at the point $(1, \mathrm{e})$.
Old method: Find the slope take the negative reciprocal and make the vector.
New method: This graph is the level curve of $w=y-\mathrm{e}^{x}=0$.
$\boldsymbol{\nabla} w=\left\langle-\mathrm{e}^{x}, 1\right\rangle \Rightarrow($ at $x=1) \nabla w(1, e)=\langle-\mathrm{e}, 1\rangle$ is perpendicular to the tangent vector to the graph, $\mathbf{v}=\langle 1, \mathrm{e}\rangle$.

Higher dimensions

Similarly, for $w=f(x, y, z)$ we get level surfaces $f(x, y, z)=c$. The gradient is perpendicular to the level surfaces.

Example 3: Find the tangent plane to the surface $x^{2}+2 y^{2}+3 z^{2}=6$ at the point $P=(1,1,1)$.
Answer: Introduce a new variable

$$
w=x^{2}+2 y^{2}+3 z^{2}
$$

Our surface is the level surface $w=6$. Saying the gradient is perpendicular to the surface means exactly the same thing as saying it is normal to the tangent plane. Computing

$$
\boldsymbol{\nabla} w=\left.\langle 2 x, 4 y, 6 z\rangle \Rightarrow \boldsymbol{\nabla} w\right|_{P}=\langle 2,4,6\rangle .
$$

Using point normal form we get the equation of the tangent plane is

$$
2(x-1)+4(y-1)+6(z-1)=0, \quad \text { or } \quad 2 x+4 y+6 z=12 .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus
 Fall 2010 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

