Tangent Plane to a Level Surface

1. Find the tangent plane to the surface $x^{2}+2 y^{2}+3 z^{2}=36$ at the point $P=(1,2,3)$.

Answer: In order to use gradients we introduce a new variable

$$
w=x^{2}+2 y^{2}+3 z^{2}
$$

Our surface is then the the level surface $w=36$. Therefore the normal to surface is

$$
\boldsymbol{\nabla} w=\langle 2 x, 4 y, 6 z\rangle
$$

At the point P we have $\left.\nabla w\right|_{P}=\langle 2,8,18\rangle$. Using point normal form, the equation of the tangent plane is

$$
2(x-1)+8(y-2)+18(z-3)=0, \text { or equivalently } 2 x+8 y+18 z=72 .
$$

2. Use gradients and level surfaces to find the normal to the tangent plane of the graph of $z=f(x, y)$ at $P=\left(x_{0}, y_{0}, z_{0}\right)$.
Answer: Introduce the new variable

$$
w=f(x, y)-z .
$$

The graph of $z=f(x, y)$ is just the level surface $w=0$. We compute the normal to the surface to be

$$
\boldsymbol{\nabla} w=\left\langle f_{x}, f_{y},-1\right\rangle .
$$

At the the point P the normal is $\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$, so the equation of the tangent plane is

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0 .
$$

We can write this in a more compact form as

$$
\left(z-z_{0}\right)=\left.\frac{\partial f}{\partial x}\right|_{0}\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{0}\left(y-y_{0}\right),
$$

which is exactly the formula we saw earlier for the tangent plane to a graph.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

