Directional Derivatives

Directional derivative

Like all derivatives the directional derivative can be thought of as a ratio. Fix a unit vector \mathbf{u} and a point P_{0} in the plane. The directional derivative of w at P_{0} in the direction \mathbf{u} is defined as

$$
\left.\frac{d w}{d s}\right|_{P_{0}, \mathbf{u}}=\lim _{\Delta s \rightarrow 0} \frac{\Delta w}{\Delta s} .
$$

Here Δw is the change in w caused by a step of length Δs in the direction of \mathbf{u} (all in the $x y$-plane).
Below we will show that

$$
\begin{equation*}
\left.\frac{d w}{d s}\right|_{P_{0}, \mathbf{u}}=\nabla w\left(P_{0}\right) \cdot \mathbf{u} . \tag{1}
\end{equation*}
$$

We illustrate this with a figure showing the graph of $w=f(x, y)$. Notice that Δs is measured in the plane and Δw is the change of w on the graph.

Proof of equation 1

The figure below represents the change in position from P_{0} resulting from taking a step of size Δs in the \mathbf{u} direction.

Since $(\Delta s)^{2}=(\Delta x)^{2}+(\Delta y)^{2}$ we have that $\left\langle\frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s}\right\rangle$. is a unit vector, so

$$
\mathbf{u}=\left\langle\frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s}\right\rangle .
$$

The tangent plane approximation at P_{0} is

$$
\left.\Delta w \approx \frac{\partial w}{\partial x}\right|_{P_{0}} \Delta x+\left.\frac{\partial w}{\partial y}\right|_{P_{0}} \Delta y
$$

Dividing this approximation by Δs gives

$$
\left.\frac{\Delta w}{\Delta s} \approx \frac{\partial w}{\partial x}\right|_{P_{0}} \frac{\Delta x}{\Delta s}+\left.\frac{\partial w}{\partial y}\right|_{P_{0}} \frac{\Delta y}{\Delta s} .
$$

We can rewrite this as a dot product

$$
\frac{\Delta w}{\Delta s} \approx\left\langle\left.\frac{\partial w}{\partial x}\right|_{P_{0}},\left.\frac{\partial w}{\partial y}\right|_{P_{0}}\right\rangle \cdot\left\langle\frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s}\right\rangle .
$$

In the dot product the first term is $\left.\boldsymbol{\nabla} w\right|_{P_{0}}$ and the second is just \mathbf{u}, so,

$$
\left.\frac{\Delta w}{\Delta s} \approx \nabla w\right|_{P_{0}} \cdot \mathbf{u} .
$$

Now taking the limit we get equation (1).
Example: (Algebraic example) Let $w=x^{3}+3 y^{2}$.
Compute $\frac{d w}{d s}$ at $P_{0}=(1,2)$ in the direction of $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}$.
Answer: We compute all the necessary pieces:
i) $\boldsymbol{\nabla} w=\left.\left\langle 3 x^{2}, 6 y\right\rangle \Rightarrow \nabla w\right|_{(1,2)}=\langle 3,12\rangle$.
ii) \mathbf{u} must be a unit vector, so $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.
iii) $\left.\frac{d w}{d s}\right|_{P_{0}, \mathbf{u}}=\left.\nabla w\right|_{(1,2)} \cdot \mathbf{u}=\langle 3,12\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{57}{5}$.

Example: (Geometric example) Let \mathbf{u} be the direction of $\langle 1,-1\rangle$.
Using the picture at right estimate $\left.\frac{\partial w}{\partial x}\right|_{P},\left.\frac{\partial w}{\partial y}\right|_{p}$, and $\left.\frac{d w}{d s}\right|_{P, \mathbf{u}}$.
By measuring from P to the next in level curve in the
x direction we see that $\Delta x \approx-.5$.
$\Rightarrow \quad\left|\frac{\partial w}{\partial x}\right|_{P} \approx \frac{\Delta w}{\Delta x} \approx \frac{10}{-.5}=-20$.
Similarly, we get $\left.\frac{\partial w}{\partial y}\right|_{P} \approx 20$.
Measuring in the \mathbf{u} direction we get $\Delta s \approx-.3$
$\Rightarrow \quad\left|\frac{d w}{d s}\right|_{P, \mathbf{u}} \approx \frac{\Delta w}{\Delta s} \approx \frac{10}{.3}=-33.3$.

Direction of maximum change:

The direction that gives the maximum rate of change is in the same direction as ∇w. The proof of this uses equation (1). Let θ be the angle between ∇w and \mathbf{u}. Then the geometric form of the dot product says

$$
\left.\frac{d w}{d s}\right|_{\mathbf{u}}=\boldsymbol{\nabla} w \cdot \mathbf{u}=|\boldsymbol{\nabla} w||\mathbf{u}| \cos \theta=|\boldsymbol{\nabla} w| \cos \theta
$$

(In the last equation we dropped the $|\mathbf{u}|$ because it equals 1.) Now it is obvious that this is greatest when $\theta=0$. That is, when $\boldsymbol{\nabla} w$ and \mathbf{u} are in the same direction.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

