Directional Derivatives

Directional derivative

Like all derivatives the *directional derivative* can be thought of as a ratio. Fix a unit vector \mathbf{u} and a point P_0 in the *plane*. The **directional derivative** of w at P_0 in the direction \mathbf{u} is defined as

$$\left. \frac{dw}{ds} \right|_{P_0,\mathbf{u}} = \lim_{\Delta s \to 0} \frac{\Delta w}{\Delta s}.$$

Here Δw is the change in w caused by a step of length Δs in the direction of **u** (all in the xy-plane).

Below we will show that

$$\left. \frac{dw}{ds} \right|_{P_0,\mathbf{u}} = \boldsymbol{\nabla} w(P_0) \cdot \mathbf{u}. \tag{1}$$

We illustrate this with a figure showing the graph of w = f(x, y). Notice that Δs is measured in the plane and Δw is the change of w on the graph.

Proof of equation 1

The figure below represents the change in position from P_0 resulting from taking a step of size Δs in the **u** direction.

The tangent plane approximation at P_0 is

$$\Delta w \approx \left. \frac{\partial w}{\partial x} \right|_{P_0} \Delta x + \left. \frac{\partial w}{\partial y} \right|_{P_0} \Delta y$$

Dividing this approximation by Δs gives

$$\frac{\Delta w}{\Delta s} \approx \left. \frac{\partial w}{\partial x} \right|_{P_0} \left. \frac{\Delta x}{\Delta s} + \left. \frac{\partial w}{\partial y} \right|_{P_0} \left. \frac{\Delta y}{\Delta s} \right|_{P_0} \right|_{P_0} \left| \frac{\Delta y}{\Delta s} \right|_{P_0} \left| \frac{\Delta y}{\Delta$$

We can rewrite this as a dot product

$$\frac{\Delta w}{\Delta s} \approx \left\langle \left. \frac{\partial w}{\partial x} \right|_{P_0}, \left. \frac{\partial w}{\partial y} \right|_{P_0} \right\rangle \cdot \left\langle \frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s} \right\rangle$$

In the dot product the first term is $\nabla w|_{P_0}$ and the second is just **u**, so,

$$\frac{\Delta w}{\Delta s} \approx \boldsymbol{\nabla} w|_{P_0} \cdot \mathbf{u}.$$

Now taking the limit we get equation (1).

Example: (Algebraic example) Let $w = x^3 + 3y^2$. Compute $\frac{dw}{ds}$ at $P_0 = (1, 2)$ in the direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$. <u>Answer:</u> We compute all the necessary pieces: i) $\nabla w = \langle 3x^2, 6y \rangle \Rightarrow |\nabla w|_{(1,2)} = \langle 3, 12 \rangle$.

ii) **u** must be a unit vector, so
$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \langle \frac{3}{5}, \frac{4}{5} \rangle$$

iii)
$$\left. \frac{dw}{ds} \right|_{P_0,\mathbf{u}} = \left. \boldsymbol{\nabla} w \right|_{(1,2)} \cdot \mathbf{u} = \langle 3, 12 \rangle \cdot \langle \frac{3}{5}, \frac{4}{5} \rangle = \left| \frac{57}{5} \right|_{\overline{5}}$$

Example: (Geometric example) Let **u** be the direction of $\langle 1, -1 \rangle$. Using the picture at right estimate $\frac{\partial w}{\partial x}\Big|_{P}$, $\frac{\partial w}{\partial y}\Big|_{p}$, and $\frac{dw}{ds}\Big|_{P,\mathbf{u}}$. By measuring from P to the next in level curve in the x direction we see that $\Delta x \approx -.5$.

$$\Rightarrow \boxed{\left. \frac{\partial w}{\partial x} \right|_P \approx \frac{\Delta w}{\Delta x} \approx \frac{10}{-.5} = -20.}$$

Similarly, we get $\left| \begin{array}{c} \frac{\partial w}{\partial y} \right|_P \approx 20.$

Measuring in the **u** direction we get $\Delta s \approx -.3$

$$\Rightarrow \left| \left| \frac{dw}{ds} \right|_{P,\mathbf{u}} \approx \frac{\Delta w}{\Delta s} \approx \frac{10}{.3} = -33.3.$$

The direction that gives the maximum rate of change is in the same direction as ∇w . The proof of this uses equation (1). Let θ be the angle between ∇w and \mathbf{u} . Then the geometric form of the dot product says

$$\frac{dw}{ds}\Big|_{\mathbf{u}} = \nabla w \cdot \mathbf{u} = |\nabla w| |\mathbf{u}| \cos \theta = |\nabla w| \cos \theta.$$

(In the last equation we dropped the $|\mathbf{u}|$ because it equals 1.) Now it is obvious that this is greatest when $\theta = 0$. That is, when ∇w and \mathbf{u} are in the same direction.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.