Problems: Directional Derivatives

The function $T=x^{2}+2 y^{2}+2 z^{2}$ gives the temperature at each point in space.

1. At the point $P=(1,1,1)$, in which direction should you go to get the most rapid decrease in T ? What is the directional derivative in this direction?

Answer: We know that the fastest increase is in the direction of $\nabla T=\langle 2 x, 4 y, 4 z\rangle$. At P, the fastest decrease is in the direction of $-\left.\nabla T\right|_{(1,1,1)}=-\langle 1,2,2\rangle$. The unit vector in this direction is $\widehat{\mathbf{u}}=-\langle 1 / 3,2 / 3,2 / 3\rangle$.
The rate of change in this direction is $-|\nabla T|=-3$. Equivalently, you could compute:

$$
\left.\frac{d T}{d s}\right|_{P, \widehat{\mathbf{u}}}=\left.\nabla T\right|_{P} \cdot \widehat{\mathbf{u}}=-3
$$

2. At P, about how far should you go in the direction found in part (1) to get a decrease of 0.3 ?

Answer: The directional derivative is a true derivative describing the limit of a ratio. In this case it equals $\lim _{\Delta s \rightarrow 0} \frac{\Delta T}{\Delta s}$, where Δs is the distance moved in the $\widehat{\mathbf{u}}$ direction. Thus, we can write $\frac{\Delta T}{\Delta s} \approx \frac{d T}{d s}$.
In this problem we have $\frac{d T}{d s}=-3$ and $\Delta T=-0.3$.

$$
\frac{-0.3}{\Delta s} \approx-3 \Rightarrow \Delta s \approx 0.1
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

