Problems: Directional Derivatives

The function $T = x^2 + 2y^2 + 2z^2$ gives the temperature at each point in space.

1. At the point P = (1, 1, 1), in which direction should you go to get the most rapid decrease in T? What is the directional derivative in this direction?

<u>Answer</u>: We know that the fastest *increase* is in the direction of $\nabla T = \langle 2x, 4y, 4z \rangle$. At P, the fastest *decrease* is in the direction of $-\nabla T|_{(1,1,1)} = -\langle 1, 2, 2 \rangle$. The unit vector in this direction is $\hat{\mathbf{u}} = -\langle 1/3, 2/3, 2/3 \rangle$.

The rate of change in this direction is $-|\nabla T| = -3$. Equivalently, you could compute:

$$\left. \frac{dT}{ds} \right|_{P,\widehat{\mathbf{u}}} = \mathbf{\nabla} T|_P \cdot \widehat{\mathbf{u}} = -3.$$

2. At P, about how far should you go in the direction found in part (1) to get a decrease of 0.3?

<u>Answer:</u> The directional derivative is a true derivative describing the limit of a ratio. In this case it equals $\lim_{\Delta s \to 0} \frac{\Delta T}{\Delta s}$, where Δs is the distance moved in the $\hat{\mathbf{u}}$ direction. Thus, we can write $\frac{\Delta T}{\Delta s} \approx \frac{dT}{ds}$.

In this problem we have $\frac{dT}{ds} = -3$ and $\Delta T = -0.3$. $\frac{-0.3}{\Delta s} \approx -3 \Rightarrow \Delta s \approx 0.1$. MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.