Problems: Lagrange Multipliers

1. Find the maximum and minimum values of $f(x, y) = x^2 + x + 2y^2$ on the unit circle. Answer: The objective function is f(x, y). The constraint is $g(x, y) = x^2 + y^2 = 1$. Lagrange equations: $f_x = \lambda g_x \iff 2x + 1 = \lambda 2x$ $f_y = \lambda g_y \iff 4y = \lambda 2y$ Constraint: $x^2 + y^2 = 1$ The second equation shows y = 0 or $\lambda = 2$. $\lambda = 2 \implies x = 1/2, y = \pm \sqrt{3}/2$. $y = 0 \implies x = \pm 1$. Thus, the critical points are $(1/2, \sqrt{3}/2), (1/2, -\sqrt{3}/2), (1, 0), \text{ and } (-1, 0)$. $f(1/2, \pm \sqrt{3/2}) = 9/4$ (maximum). f(1, 0) = 2 (neither min. nor max). f(-1, 0) = 0 (minimum).

2. Find the minimum and maximum values of $f(x, y) = x^2 - xy + y^2$ on the quarter circle $x^2 + y^2 = 1, x, y \ge 0$.

<u>Answer</u>: The constraint function here is $g(x, y) = x^2 + y^2 = 1$. The maximum and minimum values of f(x, y) will occur where $\nabla f = \lambda \nabla g$ or at endpoints of the quarter circle.

$$\nabla f = \langle 2x - y, -x + 2y \rangle$$
 and $\nabla g = \langle 2x, 2y \rangle$.

Setting $\nabla f = \lambda \nabla g$, we get $2x - y = \lambda \cdot 2x$ and $-x + 2y = \lambda \cdot 2y$.

Solving for λ and setting the results equal to each other gives us:

$$\frac{2x-y}{2x} = \frac{-x+2y}{2y}$$
$$2xy-y^2 = -x^2+2xy$$
$$x^2 = y^2.$$

Because we're constrained to $x^2 + y^2 = 1$ with x and y non-negative, we conclude that $x = y = \frac{1}{\sqrt{2}}$.

Thus, the extreme points of f(x, y) will be at $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, (1, 0), or (0, 1).

 $f(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = \frac{1}{2}$ is the minimum value of f on this quarter circle.

f(1,0) = f(0,1) = 1 are the maximal values of f on this quarter circle.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.