Problems: Lagrange Multipliers

1. Find the maximum and minimum values of $f(x, y)=x^{2}+x+2 y^{2}$ on the unit circle.

Answer: The objective function is $f(x, y)$. The constraint is $g(x, y)=x^{2}+y^{2}=1$.
Lagrange equations: $f_{x}=\lambda g_{x} \quad \Leftrightarrow \quad 2 x+1=\lambda 2 x$

$$
f_{y}=\lambda g_{y} \quad \Leftrightarrow \quad 4 y=\lambda 2 y
$$

Constraint:

$$
x^{2}+y^{2}=1
$$

The second equation shows $y=0$ or $\lambda=2$.
$\lambda=2 \Rightarrow x=1 / 2, y= \pm \sqrt{3} / 2$.
$y=0 \Rightarrow x= \pm 1$.
Thus, the critical points are $(1 / 2, \sqrt{3} / 2),(1 / 2,-\sqrt{3} / 2),(1,0)$, and $(-1,0)$.
$f(1 / 2, \pm \sqrt{3 / 2})=9 / 4$ (maximum).
$f(1,0)=2$ (neither min. nor max).
$f(-1,0)=0$ (minimum).
2. Find the minimum and maximum values of $f(x, y)=x^{2}-x y+y^{2}$ on the quarter circle $x^{2}+y^{2}=1, x, y \geq 0$.
Answer: The constraint function here is $g(x, y)=x^{2}+y^{2}=1$. The maximum and minimum values of $f(x, y)$ will occur where $\boldsymbol{\nabla} f=\lambda \boldsymbol{\nabla} g$ or at endpoints of the quarter circle.

$$
\boldsymbol{\nabla} f=\langle 2 x-y,-x+2 y\rangle \quad \text { and } \quad \boldsymbol{\nabla} g=\langle 2 x, 2 y\rangle .
$$

Setting $\boldsymbol{\nabla} f=\lambda \boldsymbol{\nabla} g$, we get $2 x-y=\lambda \cdot 2 x$ and $-x+2 y=\lambda \cdot 2 y$.
Solving for λ and setting the results equal to each other gives us:

$$
\begin{aligned}
\frac{2 x-y}{2 x} & =\frac{-x+2 y}{2 y} \\
2 x y-y^{2} & =-x^{2}+2 x y \\
x^{2} & =y^{2} .
\end{aligned}
$$

Because we're constrained to $x^{2}+y^{2}=1$ with x and y non-negative, we conclude that $x=y=\frac{1}{\sqrt{2}}$.
Thus, the extreme points of $f(x, y)$ will be at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),(1,0)$, or $(0,1)$.

$$
\begin{gathered}
f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{1}{2} \quad \text { is the minimum value of } f \text { on this quarter circle. } \\
f(1,0)=f(0,1)=1 \quad \text { are the maximal values of } f \text { on this quarter circle. }
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

