Proof of Lagrange Multipliers

Here we will give two arguments, one geometric and one analytic for why Lagrange multipliers work.

Critical points

For the function $w=f(x, y, z)$ constrained by $g(x, y, z)=c(c$ a constant $)$ the critical points are defined as those points, which satisfy the constraint and where ∇f is parallel to ∇g. In equations:

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z) \quad \text { and } \quad g(x, y, z)=c .
$$

Statement of Lagrange multipliers

For the constrained system local maxima and minima (collectively extrema) occur at the critical points.

Geometric proof for Lagrange

(We only consider the two dimensional case, $w=f(x, y)$ with constraint $g(x, y)=c$.)
For concreteness, we've drawn the constraint curve, $g(x, y)=c$, as a circle and some level curves for $w=f(x, y)=c$ with explicit (made up) values. Geometrically, we are looking for the point on the circle where w takes its maximum or minimum values.

Now, start at the level curve with $w=17$, which has no points on the circle. So, clearly, the maximum value of w on the constraint circle is less than 17 . Move down the level curves until they first touch the circle when $w=14$. Call the point where the first touch P. It is clear that P gives a local maximum for w on $g=c$, because if you move away from P in either direction on the circle you'll be on a level curve with a smaller value.
Since the circle is a level curve for g, we know $\boldsymbol{\nabla} g$ is perpendicular to it. We also know $\boldsymbol{\nabla} f$ is perpendicular to the level curve $w=14$, since the curves themselves are tangent, these two gradients must be parallel.
Likewise, if you keep moving down the level curves, the last one to touch the circle will give a local minimum and the same argument will apply.

Analytic proof for Lagrange (in three dimensions)
Suppose f has a local maximum at P on the constraint surface.
Let $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ be an arbitrary parametrized curve which lies on the constraint surface and has $(x(0), y(0), z(0))=P$. Finally, let $h(t)=f(x(t), y(t), z(t))$. The setup guarantees that $h(t)$ has a maximum at $t=0$.
Taking a derivative using the chain rule in vector form gives

$$
h^{\prime}(t)=\left.\nabla f\right|_{\mathbf{r}(t)} \cdot \mathbf{r}^{\prime}(t)
$$

Since $t=0$ is a local maximum, we have

$$
h^{\prime}(0)=\left.\nabla f\right|_{P} \cdot \mathbf{r}^{\prime}(0)=0 .
$$

Thus, $\left.\boldsymbol{\nabla} f\right|_{P}$ is perpendicular to any curve on the constraint surface through P.
This implies $\left.\boldsymbol{\nabla} f\right|_{P}$ is perpendicular to the surface. Since $\left.\nabla g\right|_{P}$ is also perpendicular to the surface we have proved $\left.\nabla f\right|_{P}$ is parallel to $\left.\nabla g\right|_{P}$. QED

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

